首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphatidylinositol 3-kinase (PI3K) plays several important roles in neuronal survival. Activation of the pathway is essential for the neuroprotective mechanisms of materials that shield neuronal cells from many stressful conditions. However, there have been no reports to date about the effect of the direct activation of the pathway in hypoxic injury of neuronal cells. We investigated whether the direct activation of the PI3K pathway inhibits neuronal cell death induced by hypoxia. Primary cultured cortical neurons (PCCNs) were exposed to hypoxic conditions (less than 1 mol% O2) and/or treated with PI3K activator. Hypoxia reduced the viability of PCCNs in a time-dependent manner, but treatment with PI3K significantly restored viability in a concentration-dependent manner. Among the signaling proteins involved in the PI3K pathway, those associated with survival, including Akt and glycogen synthase kinase-3β, were decreased shortly after exposure to hypoxia and those associated with cell death, including BAX, apoptosis-induced factor, cytochrome c, caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP), were increased. However, treatment with PI3K activator normalized the expression levels of those signaling proteins. PARP activity and levels of ATP and NAD+ altered by hypoxia were also normalized with direct PI3K activation. All these findings suggest that direct and early activation is important for protecting neuronal cells from hypoxic injury.  相似文献   

3.
The phosphatidylinositol 3 kinase (PI3K)-Akt/PKB pathway protects neurons from apoptosis caused by diverse stress stimuli. However, its protective role against the amyloid beta peptide (Abeta), a major constituent of Alzheimer's disease plaques, has not been studied. We investigated the effect of the Abeta-derived Abeta(25-35) peptide on apoptosis and on the Akt survival pathway in PC12 cells. Cells submitted to micromolar concentrations of Abeta(25-35) exhibited increased production of reactive oxygen species (ROS) and morphological alterations consistent with apoptosis. Akt1 was activated shortly after incubation with Abeta(25-35) and Abeta(1-40) with a kinetics different to that of nerve-derived growth factor. Akt1 activation was blocked by the PI3K inhibitor wortmannin. We tested the hypothesis that Akt1 might modify the vulnerability of neural cells to apoptosis induced by Abeta(25-35). Overexpression of an active version of Akt1 attenuated the apoptotic effect of Abeta(25-35) as determined by flow cytometry. Moreover, PC12 cells overexpressing a membrane-targeted N-myristylated fusion protein of enhanced green fluorescence protein (EGFP) and mouse Akt1 exhibited lower levels of ROS than control EGFP-transfected cells. The present findings demonstrate that Akt1 is activated in response to Abeta(25-35) in a PI3K-dependent manner and that active Akt1 protects PC12 cells against the pro-apoptotic action of this peptide.  相似文献   

4.
Acetylcholinesterase (ACHE) is thought to play an important role during apoptosis.Our resultsshowed that H_2O_2 induced AChE activity,a functional marker in apoptosis,increases in neuronal-like PC 12cells.Glutathione, which is involved in cellular redox homeostasis,inhibited the increase of AChE activity,suggesting that reactive oxygen species (ROS) play a key role in this process.Further investigation showedthat the elevation of AChE was observed after the degradation of Akt, release of cytochrome c from mitochondriainto the cytosol,and activation of caspase family members.When nerve growth factor (NGF) was present,with the maintenance of Akt level,the elevation of AChE,the cytochrome c diffusion,as well as apoptosiswere markedly attenuated in H202-treated PC 12 cells. However,wortmannin,an inhibitor of the PI3K/Aktpathway,accelerated the apoptosis and increased the AChE activity.The overexpression of constitutivelyactivated Akt,which is a downstream signalling element of the NGF receptor TrkA,delayed mitochondrialcollapse and inhibited elevation of AChE activity.Thus, NGF prevented apoptosis and elevation of AChEactivity by activating the Akt pathway and stabilizing the function of mitochondria.  相似文献   

5.
This study was undertaken to explore the effects of trichostatin A (TSA), an inhibitor of histone deacetylase, on the viability, apoptosis, and invasiveness of hypoxic rheumatoid arthritis fibroblast‐like synoviocytes (RA FLSs). RA FLSs were exposed to hypoxia for 24 h in the presence or absence of 2 μM TSA and tested for cell viability, apoptosis, invasion, and gene expression. The involvement of the phosphatidylinositol‐3‐kinase (PI3K)/Akt pathway was checked. TSA significantly inhibited the viability and induced apoptosis of hypoxic RA FLSs, compared to vehicle control. TSA blocked hypoxia‐induced invasion of RA FLSs during Matrigel invasion assays and reduced the expression of matrix metalloproteinases (MMP‐2 and MMP‐9) and PI3K and phosphorylation of Akt. Overexpression of constitutively active Akt reversed TSA‐mediated suppression of invasiveness and downregulation of MMP‐2 and MMP‐9. Our results indicate the antisurvival and antiinvasive activities of TSA in hypoxic RA FLSs, which is associated with inactivation of PI3K/Akt signaling.  相似文献   

6.
One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. In this study, we investigated the neuroprotective effect of fucoidan on H(2)O(2)-induced apoptosis in PC12 cells and the possible signaling pathways involved. The results showed that fucoidan inhibited the decrease of cell viability, scavenged ROS formation and reduced lactate dehydrogenase release in H(2)O(2)-induced PC12 cells. These changes were associated with an increase in superoxide dismutase and glutathione peroxidase activity, and reduction in malondialdehyde. In addition, fucoidan treatment inhibited apoptosis in H(2)O(2)-induced PC12 cells by increasing the Bcl-2/Bax ratio and decreasing active caspase-3 expression, as well as enhancing Akt phosphorylation (p-Akt). However, the protection of fucoidan on cell survival, p-Akt, the Bcl-2/Bax ratio and caspase-3 activity were abolished by pretreating with phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In consequence, fucoidan might protect the neurocytes against H(2)O(2)-induced apoptosis via reducing ROS levels and activating PI3K/Akt signaling pathway.  相似文献   

7.
Ovarian follicle development is dependent on growth factors that stimulate cell proliferation and act as survival factors to prevent apoptosis of follicle cells. We examined the mechanism of the protective effect of IGF-I against Fas ligand-induced apoptosis of granulosa cells and its relationship to cell proliferation. IGF-I activated both the phosphoinositide 3'-OH kinase (PI3K) and the MAPK pathways. Experiments using specific inhibitors of these pathways showed that protection by IGF-I was mediated by the PI3K pathway and not the MAPK pathway. Recombinant adenoviruses were used to test whether the downstream target of PI3K activation, Akt kinase, was required for protection against apoptosis. Expression of dominant negative Akt prevented protection by IGF-I whereas expression of constitutively active Akt (myrAkt) mimicked the effect of IGF-I. Treatment with IGF-I, or expression of myrAkt, increased progression from G(0)/G(1) to S phase of the cell cycle whereas expression of dominant negative Akt inhibited G(0)/G(1) to S phase progression and prevented the stimulatory effect of IGF-I. We tested whether cell cycle progression was required for protection from apoptosis using the cyclin-dependent kinase-2 inhibitor roscovitine, which blocks cells at the G(1)/S transition. Roscovitine prevented the protective effect of IGF-I and myrAkt expression against apoptosis. Therefore, activation of Akt is not sufficient to protect granulosa cells from apoptosis in the absence of cell cycle progression. In summary, IGF-I protects granulosa cells from apoptosis by activation of the PI3K/Akt pathway. This protective effect can occur only when progression from G(1) to S phase of the cell cycle regulated by the PI3K/Akt pathway is unperturbed.  相似文献   

8.
9.
In contrast to cell types in which exposure to hypoxia causes a general reduction of metabolic activity, a remarkable feature of pulmonary artery adventitial fibroblasts is their ability to proliferate in response to hypoxia. Previous studies have suggested that ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are activated by hypoxia and play a role in a variety of cell responses. However, the pathways involved in mediating hypoxia-induced proliferation are largely unknown. Using pharmacological inhibitors, we established that PI3K-Akt, mTOR-p70 ribosomal protein S6 kinase (p70S6K), and EKR1/2 signaling pathways play a critical role in hypoxia-induced adventitial fibroblast proliferation. We found that exposure of serum-starved fibroblasts to 3% O2 resulted in a time-dependent activation of PI3K and transient phosphorylation of Akt. However, activation of PI3K was not required for activation of ERK1/2, implying a parallel involvement of these pathways in the proliferative response of fibroblasts to hypoxia. We found that hypoxia induced significant increases in mTOR, p70S6K, 4E-BP1, and S6 ribosomal protein phosphorylation, as well as dramatic increases in p70S6K activity. The activation of p70S6K/S6 pathway was sensitive to inhibition by rapamycin and LY294002, indicating that mTOR and PI3K/Akt are upstream signaling regulators. However, the magnitude of hypoxia-induced p70S6K activity and phosphorylation suggests involvement of additional signaling pathways. Thus our data demonstrate that hypoxia-induced adventitial fibroblast proliferation requires activation and interaction of PI3K, Akt, mTOR, p70S6K, and ERK1/2 and provide evidence for hypoxic regulation of protein translational pathways in cells exhibiting the capability to proliferate under hypoxic conditions.  相似文献   

10.
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.  相似文献   

11.
Human hepatocytes usually are resistant to TNF-alpha cytotoxicity. In mouse or rat hepatocytes, repression of NF-kappaB activation is sufficient to induce TNF-alpha-mediated apoptosis. However, in both Huh-7 human hepatoma cells and Hc human normal hepatocytes, when infected with an adenovirus expressing a mutated form of IkappaBalpha (Ad5IkappaB), which almost completely blocks NF-kappaB activation, >80% of the cells survived 24 h after TNF-alpha stimulation. Here, we report that TNF-alpha activates other antiapoptotic factors, such as sphingosine kinase (SphK), phosphatidylinositol 3-kinase (PI3K), and Akt kinase. Pretreatment of cells with N,N-dimethylsphingosine (DMS), an inhibitor of SphK, or LY 294002, an inhibitor of PI3K that acts upstream of Akt, increased the number of apoptotic cells induced by TNF-alpha in Ad5IkappaB-infected Huh-7 and Hc cells. TNF-alpha-induced activations of PI3K and Akt were inhibited by DMS. In contrast, exogenous sphingosine 1-phosphate, a product of SphK, was found to activate Akt and partially rescued the cells from TNF-alpha-induced apoptosis. Although Akt has been reported to activate NF-kappaB, DMS and LY 294002 failed to prevent TNF-alpha-induced NF-kappaB activation, suggesting that the antiapoptotic effects of SphK and Akt are independent of NF-kappaB. Furthermore, apoptosis mediated by Fas ligand (FasL) involving Akt activation also was potentiated by DMS pretreatment in Hc cells. Sphingosine 1-phosphate administration partially protected cells from FasL-mediated apoptosis. These results indicate that not only NF-kappaB but also SphK and PI3K/Akt are involved in the signaling pathway(s) for protection of human hepatocytes from the apoptotic action of TNF-alpha and probably FasL.  相似文献   

12.
13.
Parkinson's disease (PD) is a typical neurodegenerative disease. α-Lipoic acid (α-LA) can reduce the incidence of neuropathy. The present study explored the role and mechanism of α-LA in 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of PD. The PD model was induced via treating PC12 cells with MPP+ at different concentrations. MPP+ and α-LA effects on PC12 cells were assessed from cell viability and ferroptosis. Cell viability was detected using the cell counting kit-8 assay. Malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), iron, reactive xygen species (ROS), and glutathione (GSH) concentrations, and ferroptosis-related protein SLC7A11 and GPx4 expressions were used for ferroptosis evaluation. p-PI3K, p-Akt, and nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels were detected. The PI3K/Akt/Nrf2 pathway inhibitors were applied to verify the role of the PI3K/Akt/Nrf2 pathway in α-LA protection against MPP+-induced decreased cell viability and ferroptosis. MPP+-reduced cell viability and induced ferroptosis as presented by increased MDA, 4-HNE, iron, and ROS concentrations, and reduced levels of GSH and ferroptosis marker proteins (SLC7A11 and GPx4). α-LA attenuated MPP+-induced cell viability decline and ferroptosis. The PI3K/Akt/Nrf2 pathway was activated after α-LA treatment. Inhibiting the PI3K/Akt/Nrf2 pathway weakened the protection of α-LA against MPP+ treatment. We highlighted that α-LA alleviated MPP+-induced cell viability decrease and ferroptosis in PC12 cells via activating the PI3K/Akt/Nrf2 pathway.  相似文献   

14.
Migration and invasion of fibroblast-like synoviocytes (FLSs) are critical in the pathogenesis of rheumatoid arthritis (RA). Hypoxic conditions are present in RA joints, and hypoxia has been extensively studied in angiogenesis and inflammation. However, its effect on the migration and invasion of RA-FLSs remains unknown. In this study, we observed that RA-FLSs exposed to hypoxic conditions experienced epithelial–mesenchymal transition (EMT), with increased cell migration and invasion. We demonstrated that hypoxia-induced EMT was accompanied by increased hypoxia-inducible factor (HIF)-1α expression and activation of Akt. After knockdown or inhibition of HIF-1α in hypoxia by small interfering RNA or genistein (Gen) treatment, the EMT transformation and invasion ability of FLSs were regained. HIF-1α could be blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, indicating that HIF-1α activation was regulated by the PI3K/Akt pathway. Administration of LY294002 (20 mg/kg, intra-peritoneally) twice weekly and Gen (25 mg/kg, by gavage) daily for 3 weeks from day 20 after primary immunization in a collagen-induced arthritis rat model, markedly alleviated the clinical signs, radiology progression, synovial hyperplasia, and inflammatory cells infiltration of joints. Thus, results of this study suggest that activation of the PI3K/Akt/HIF-1α pathway plays a pivotal role in mediating hypoxia-induced EMT transformation and invasion of RA-FLSs under hypoxia.  相似文献   

15.
16.
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia‐induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3‐kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling pathway in SH‐SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre‐treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)‐induced viability loss, reduced the proportion of apoptosis and regulated OGD‐mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD‐caused mitochondrial membrane potential and decomposition of caspase‐3 to cleaved caspase‐3, and heightened the B‐cell lymphoma 2 (Bcl‐2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH‐SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p‐Akt, p‐GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO‐1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD‐induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.  相似文献   

17.
Linarin, a natural occurring flavanol glycoside derived from Mentha arvensis and Buddleja davidii is known to have anti-acetylcholinesterase effects. The present study intended to explore the neuroprotective effects of linarin against Aβ(25-35)-induced neurotoxicity with cultured rat pheochromocytoma cells (PC12 cells) and the possible mechanisms involved. For this purpose, PC12 cells were cultured and exposed to 30 μM Aβ(25-35) in the absence or presence of linarin (0.1, 1.0 and 10 μM). In addition, the potential contribution of the PI3K/Akt neuroprotective pathway in linarin-mediated protection against Aβ(25-35)-induced neurotoxicity was also investigated. The results showed that linarin dose-dependently increased cell viability and reduced the number of apoptotic cells as measured by MTT assay, Annexin-V/PI staining, JC-1 staining and caspase-3 activity assay. Linarin could also inhibit acetylcholinesterase activity induced by Aβ(25-35) in PC12 cells. Further study revealed that linarin induced the phosphorylation of Akt dose-dependently. Treatment of PC12 cells with the PI3K inhibitor LY294002 attenuated the protective effects of linarin. Furthermore, linarin also stimulated phosphorylation of glycogen synthase kinase-3β (GSK-3β), a downstream target of PI3K/Akt. Moreover, the expression of the anti-apoptotic protein Bcl-2 was also increased by linarin treatment. These results suggest that linarin prevents Aβ(25-35)-induced neurotoxicity through the activation of PI3K/Akt, which subsequently inhibits GSK-3β and up-regulates Bcl-2. These findings raise the possibility that linarin may be a potent therapeutic compound against Alzheimer's disease acting through both acetylcholinesterase inhibition and neuroprotection.  相似文献   

18.
Met(5)-enkephalin (ME)-induced cardioprotection occurs via epidermal growth factor receptor (EGFR) transactivation with the subsequent activation of phosphatidylinositol 3-kinase (PI3K). In the present study, we investigated whether there is a sex difference in ME-elicited PI3K signaling. Neonatal murine cardiomyocytes were isolated by collagenase digestion and subjected to 90 min hypoxia and 180 min reoxygenation at 37 degrees C (n = 5 to 7 replicates). PI3K/Akt signaling was interrogated using pharmacological inhibitors and small interfering RNA (siRNA). Cell death was assessed by propidium iodide. More than 300 cells were examined for each treatment. The data are presented as means +/- SE. There was not a sex difference in the basal content of total Akt. ME (100 microM) elicited comparable protection in both sexes. Wortmannin and the nonselective Akt inhibitor IV completely abolished ME-induced protection in male cardiomyocytes but only attenuated protection in female cardiomyocytes. Isoform-selective knockdown of Akt in males with siRNAs against Akt1/2 completely abolished ME-induced cardioprotection, whereas the siRNAs against Akt3 only attenuated protection of approximately 40%. In contrast, in females the siRNAs against Akt1/2 attenuated and against Akt3 eliminated ME-induced cardioprotection. There is not a sex difference in the degree of ME-induced protection, and there is a sex difference in the cardioprotective signaling pathways after the administration of ME; ME-induced cardioprotection in males primarily utilizes a PI3K/Akt1/2 pathway and in females primarily utilizes a PI3K/Akt3 pathway. The incomplete loss of protection in females following the blockade of PI3K suggests that additional factors may facilitate the maintenance or function of activated Akt.  相似文献   

19.
Bone marrow-derived mesenchymal stem cells (MSCs) have great potential for repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their therapeutic potential. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. The aim of this study was to investigate the anti-apoptotic effects of CREG on MSCs under hypoxic and serum deprivation (SD) conditions. We also investigated the potential mechanism(s) that may mediate the actions of CREG. All experiments were performed on rat bone marrow MSCs. Apoptosis was induced by exposure of cells to hypoxia/SD in a sealed GENbox hypoxic chamber. Effects of CREG were investigated in the absence or presence of inhibitors that target phosphoinositide 3-kinase (PI3K). We found that the overexpression of CREG markedly protected MSCs from hypoxia/SD-induced apoptosis through inhibition of the mitochondrial apoptotic pathway, leading to attenuation of caspase-3. Moreover, CREG enhanced Akt phosphorylation and decreased the expression of p53 in MSCs under hypoxic/SD conditions. The PI3K/Akt inhibitor LY294002 significantly increased the amount of p53 protein and attenuated the anti-apoptotic effects of CREG on MSCs. This study indicates that CREG is a novel and potent survival factor for MSCs, therefore, it may be a useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号