首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Serotonergic system participates in a wide range of physiological processes and behaviors, but its role is generally considered as modulatory and noncrucial, especially concerning life-sustaining functions. We recently created a transgenic mouse line in which a functional deficit in serotonin homeostasis due to excessive serotonin autoinhibition was produced by inducing serotonin 1A receptor (Htr1a) overexpression selectively in serotonergic neurons (Htr1a raphe-overexpressing or Htr1aRO mice). Htr1aRO mice exhibit episodes of autonomic dysregulation, cardiovascular crises and death, resembling those of sudden infant death syndrome (SIDS) and revealing a life-supporting role of serotonergic system in autonomic control. Since midbrain serotonergic neurons are chemosensitive and are implicated in arousal we hypothesized that their chemosensitivity might be impaired in Htr1aRO mice.

Principal findings

Loose-seal cell-attached recordings in brainstem slices revealed that serotonergic neurons in dorsal raphe nucleus of Htr1aRO mice have dramatically reduced responses to hypercapnic challenge as compared with control littermates. In control mice, application of 9% CO2 produced an increase in firing rate of serotonergic neurons (0.260±0.041 Hz, n = 20, p = 0.0001) and application of 3% CO2 decreased their firing rate (−0.142±0.025 Hz, n = 17, p = 0.0008). In contrast, in Htr1aRO mice, firing rate of serotonergic neurons was not significantly changed by 9% CO2 (0.021±0.034 Hz, n = 16, p = 0.49) and by 3% CO2 (0.012±0.046 Hz, n = 12, p = 0.97).

Conclusions

Our findings support the hypothesis that chemosensitivity of midbrain serotonergic neurons provides a physiological mechanism for arousal responses to life-threatening episodes of hypercapnia and that functional impairment, such as excessive autoinhibition, of midbrain serotonergic neuron responses to hypercapnia may contribute to sudden death.  相似文献   

2.

Background & Aims

Non-alcoholic steatohepatitis (NASH) involves steatosis combined with inflammation, which can progress into fibrosis and cirrhosis. Exploring the molecular mechanisms of NASH is highly dependent on the availability of animal models. Currently, the most commonly used animal models for NASH imitate particularly late stages of human disease. Thus, there is a need for an animal model that can be used for investigating the factors that potentiate the inflammatory response within NASH. We have previously shown that 7-day high-fat-high-cholesterol (HFC) feeding induces steatosis and inflammation in both APOE2ki and Ldlr−/− mice. However, it is not known whether the early inflammatory response observed in these mice will sustain over time and lead to liver damage. We hypothesized that the inflammatory response in both models is sufficient to induce liver damage over time.

Methods

APOE2ki and Ldlr−/− mice were fed a chow or HFC diet for 3 months. C57Bl6/J mice were used as control.

Results

Surprisingly, hepatic inflammation was abolished in APOE2ki mice, while it was sustained in Ldlr−/− mice. In addition, increased apoptosis and hepatic fibrosis was only demonstrated in Ldlr−/− mice. Finally, bone-marrow-derived-macrophages of Ldlr−/− mice showed an increased inflammatory response after oxidized LDL (oxLDL) loading compared to APOE2ki mice.

Conclusion

Ldlr−/− mice, but not APOE2ki mice, developed sustained hepatic inflammation and liver damage upon long term HFC feeding due to increased sensitivity for oxLDL uptake. Therefore, the Ldlr−/− mice are a promising physiological model particularly vulnerable for investigating the onset of hepatic inflammation in non-alcoholic steatohepatitis.  相似文献   

3.

Background

GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation.

Aims

To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis.

Methods

Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies.

Results

GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn''s disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1.

Conclusions

GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn''s disease. Ciprofloxacin is a GP-BAR1 ligand.  相似文献   

4.

Rationale

Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response.

Objective

To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging.

Methods and Results

Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice.

Conclusions

BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.  相似文献   

5.

Background

Hypercapnic Chronic Obstructive Pulmonary Disease (COPD) exacerbation in patients with comorbidities and multidrug therapy is complicated by mixed acid-base, hydro-electrolyte and lactate disorders. Aim of this study was to determine the relationships of these disorders with the requirement for and duration of noninvasive ventilation (NIV) when treating hypercapnic respiratory failure.

Methods

Sixty-seven consecutive patients who were hospitalized for hypercapnic COPD exacerbation had their clinical condition, respiratory function, blood chemistry, arterial blood gases, blood lactate and volemic state assessed. Heart and respiratory rates, pH, PaO2 and PaCO2 and blood lactate were checked at the 1st, 2nd, 6th and 24th hours after starting NIV.

Results

Nine patients were transferred to the intensive care unit. NIV was performed in 11/17 (64.7%) mixed respiratory acidosis–metabolic alkalosis, 10/36 (27.8%) respiratory acidosis and 3/5 (60%) mixed respiratory-metabolic acidosis patients (p = 0.026), with durations of 45.1±9.8, 36.2±8.9 and 53.3±4.1 hours, respectively (p = 0.016). The duration of ventilation was associated with higher blood lactate (p<0.001), lower pH (p = 0.016), lower serum sodium (p = 0.014) and lower chloride (p = 0.038). Hyponatremia without hypervolemic hypochloremia occurred in 11 respiratory acidosis patients. Hypovolemic hyponatremia with hypochloremia and hypokalemia occurred in 10 mixed respiratory acidosis–metabolic alkalosis patients, and euvolemic hypochloremia occurred in the other 7 patients with this mixed acid-base disorder.

Conclusions

Mixed acid-base and lactate disorders during hypercapnic COPD exacerbations predict the need for and longer duration of NIV. The combination of mixed acid-base disorders and hydro-electrolyte disturbances should be further investigated.  相似文献   

6.

Background

Factors determining the onset and severity of chronic obstructive pulmonary disease remain poorly understood. Previous studies demonstrated that airway surface dehydration in βENaC-overexpressing (βENaC-Tg) mice on a mixed genetic background caused either neonatal mortality or chronic obstructive lung disease suggesting that the onset of lung disease was modulated by the genetic background.

Methods

To test this hypothesis, we backcrossed βENaC-Tg mice onto two inbred strains (C57BL/6 and BALB/c) and studied effects of the genetic background on neonatal mortality, airway ion transport and airway morphology. Further, we crossed βENaC-Tg mice with CFTR-deficient mice to validate the role of CFTR in early lung disease.

Results

We demonstrate that the C57BL/6 background conferred increased CFTR-mediated Cl secretion, which was associated with decreased mucus plugging and mortality in neonatal βENaC-Tg C57BL/6 compared to βENaC-Tg BALB/c mice. Conversely, genetic deletion of CFTR increased early mucus obstruction and mortality in βENaC-Tg mice.

Conclusions

We conclude that a decrease or absence of CFTR function in airway epithelia aggravates the severity of early airway mucus obstruction and related mortality in βENaC-Tg mice. These results suggest that genetic or environmental factors that reduce CFTR activity may contribute to the onset and severity of chronic obstructive pulmonary disease and that CFTR may serve as a novel therapeutic target.  相似文献   

7.

Objective

Physical fitness is reduced in adults with Down syndrome (DS). The present study was conducted to elucidate the exercise response in adults with DS.

Design

Case controlled before-after trial.

Setting

Residential centre for people with intellectual disabilities.

Participants

96 Adults with DS, 25 non-DS adults with an intellectual disability, 33 controls.

Interventions

Echocardiography to exclude heart defects and to measure cardiac index (CI) in the supine position, supine position with raised legs, and following ten knee bends.

Main outcome measure

Exercise testing

Results

At rest, mean CI was not significantly different between persons with DS and controls (2.3 vs. 2.4 l/min/m2, p = 0.3). However, mean CI after exercise was significantly lower in DS (2.9 vs. 3.7 l/min/m2, p < 0.001) and mean CI increase from rest to exercise was more than 50% lower in DS. On the contrary, CI after exercise was similar among controls and non-DS adults with an intellectual disability. Significantly lower stroke volumes in DS were found with insufficient heart rate response.

Conclusions

CI at rest was similar in adults with DS and controls; however persons with DS have a diminished cardiac response to exercise. Stroke volumes were significantly lower in DS during exercise and a compensated heightened heart rate was absent.  相似文献   

8.

Purpose

Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice.

Methods

The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8 +/− mice expressing ß-galactosidase. Aged Mfge8 +/− and Mfge8 −/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV.

Results

rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch''s membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls.

Conclusions

Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.  相似文献   

9.
Sun Y  Lim Y  Li F  Liu S  Lu JJ  Haberberger R  Zhong JH  Zhou XF 《PloS one》2012,7(4):e35883

Background

Neurons extend their dendrites and axons to build functional neural circuits, which are regulated by both positive and negative signals during development. Brain-derived neurotrophic factor (BDNF) is a positive regulator for neurite outgrowth and neuronal survival but the functions of its precursor (proBDNF) are less characterized.

Methodology/Principal Findings

Here we show that proBDNF collapses neurite outgrowth in murine dorsal root ganglion (DRG) neurons and cortical neurons by activating RhoA via the p75 neurotrophin receptor (p75NTR). We demonstrated that the receptor proteins for proBDNF, p75NTR and sortilin, were highly expressed in cultured DRG or cortical neurons. ProBDNF caused a dramatic neurite collapse in a dose-dependent manner and this effect was about 500 fold more potent than myelin-associated glycoprotein. Neutralization of endogenous proBDNF by using antibodies enhanced neurite outgrowth in vitro and in vivo, but this effect was lost in p75NTR−/− mice. The neurite outgrowth of cortical neurons from p75NTR deficient (p75NTR−/−) mice was insensitive to proBDNF. There was a time-dependent reduction of length and number of filopodia in response to proBDNF which was accompanied with a polarized RhoA activation in growth cones. Moreover, proBDNF treatment of cortical neurons resulted in a time-dependent activation of RhoA but not Cdc42 and the effect was absent in p75NTR−/− neurons. Rho kinase (ROCK) and the collapsin response mediator protein-2 (CRMP-2) were also involved in the proBDNF action.

Conclusions

proBDNF has an opposing role in neurite outgrowth to that of mature BDNF. Our observations suggest that proBDNF collapses neurites outgrowth and filopodial growth cones by activating RhoA through the p75NTR signaling pathway.  相似文献   

10.
Johnell K  Fischer H 《PloS one》2011,6(8):e23750

Objective

To investigate the use of dopaminergic and serotonergic drugs in elderly people.

Methods

We analyzed data on age, sex and dispensed drugs for individuals aged ≥65 years registered in the Swedish Prescribed Drug Register from July to September 2008 (n = 1 347 564; 81% of the total population aged ≥65 years in Sweden). Main outcome measures were dopaminergic (enhancing and/or lowering) and serotonergic (enhancing and/or lowering) drugs and combinations of these.

Results

Dopaminergic and serotonergic drugs were used by 5.6% and 13.2% the participants, respectively. Female gender was related to use of both dopaminergic and, particularly, serotonergic drugs. Higher age was associated with use of dopamine lowering drugs and serotonergic drugs, whereas the association with use of dopamine enhancing drugs declined in the oldest old. The occurrence of combinations of dopaminergic and serotonergic drugs was generally low, with dopamine lowering + serotonin lowering drug the most common combination (1.6%). Female gender was associated with all of the combinations of dopaminergic and serotonergic drugs, whereas age showed a mixed pattern.

Conclusion

Approximately one out of ten older patients uses serotonergic drugs and one out of twenty dopaminergic drugs. The frequent use of dopaminergic and serotonergic drugs in the elderly patients is a potential problem due to the fact that aging is associated with a down-regulation of both these monoaminergic systems. Future studies are needed for evaluation of the impact of these drugs on different cognitive and emotional functions in old age.  相似文献   

11.
12.

Background

Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined.

Method

We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability.

Results

In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W.

Conclusion

Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The increase of sustained HPV and endothelial permeability in hypoxic hypercapnia without acidosis was iNOS dependent.  相似文献   

13.
14.

Background

The ability to respond to anti-growth signals is critical to maintain tissue homeostasis and loss of this negative growth control safeguard is considered a hallmark of cancer. Negative growth regulation generally occurs during the G0/G1 phase of the cell cycle, yet the redundancy and complexity among components of this regulatory network has made it difficult to discern how negative growth cues protect cells from aberrant proliferation.

Methodology/Principal Findings

The retinoblastoma protein (pRB) acts as the final barrier to prevent cells from entering into the cell cycle. By introducing subtle changes in the endogenous mouse Rb1 gene (Rb1ΔL), we have previously shown that interactions at the LXCXE binding cleft are necessary for the proper response to anti-growth signals such as DNA damage and TGF-β, with minimal effects on overall development. This disrupts the balance of pro- and anti-growth signals in mammary epithelium of Rb1ΔL/ΔL mice. Here we show that Rb1ΔL/ΔL mice are more prone to mammary tumors in the Wap-p53R172H transgenic background indicating that negative growth regulation is important for tumor suppression in these mice. In contrast, the same defect in anti-growth control has no impact on Neu-induced mammary tumorigenesis.

Conclusions/Significance

Our work demonstrates that negative growth control by pRB acts as a crucial barrier against oncogenic transformation. Strikingly, our data also reveals that this tumor suppressive effect is context-dependent.  相似文献   

15.

Objectives

This study aimed to carry out a histological examination of the temporomandibular joint (TMJ) in ank mutant mice and to identify polymorphisms of the human ANKH gene in order to establish the relationship between the type of temporomandibular disorders (TMD) and ANKH polymorphisms.

Materials and Methods

Specimens from the TMJ of ank mutant and wild-type mice were inspected with a haematoxylin and eosin staining method. A sample of 55 TMD patients were selected. Each was examined with standard clinical procedures and genotyping techniques.

Results

The major histological finding in ank mutant mice was joint space narrowing. Within TMD patients, closed lock was more prevalent among ANKH-OR homozygotes (p = 0.011, OR = 7.7, 95% CI 1.6–36.5) and the elder (p = 0.005, OR = 2.4, 95% CI 1.3–4.3).

Conclusions

Fibrous ankylosis was identified in the TMJ of ank mutant mice. In the human sample, ANKH-OR polymorphism was found to be a genetic marker associated with TMJ closed lock. Future investigations correlating genetic polymorphism to TMD are indicated.  相似文献   

16.

Background

Pneumonia and pulmonary infections are major causes of mortality among the growing elderly population. Age associated attenuations of various immune parameters, involved with both innate and adaptive responses are collectively known as immune senescence. These changes are likely to be involved with differences in host susceptibility to disease between young and aged individuals.

Methodology/Principal Findings

The objective of this study was to assess potential age related differences in the pulmonary host response in mice to the Gram-negative respiratory pathogen, Francisella novicida. We intranasally infected mice with F. novicida and compared various immune and pathological parameters of the pulmonary host response in both young and aged mice.

Conclusions/Significance

We observed that 20% of aged mice were able to survive an intranasal challenge with F. novicida while all of their younger cohorts died consistently within 4 to 6 days post infection. Further experiments revealed that all of the aged mice tested were initially able to control bacterial replication in the lungs as well as at distal sites of replication compared with young mice. In addition, the small cohort of aged survivors did not progress to a severe sepsis syndrome with hypercytokinemia, as did all of the young adult mice. Finally, a lack of widespread cell death in potential aged survivors coupled with a difference in cell types recruited to sites of infection within the lung confirmed an altered host response to Francisella in aged mice.  相似文献   

17.

Background

In addition to its complement-regulating activity, CD55 is a ligand of the adhesion class G protein-coupled receptor CD97; however, the relevance of this interaction has remained elusive. We previously showed that mice lacking a functional CD97 gene have increased numbers of granulocytes.

Methodology/Results

Here, we demonstrate that CD55-deficient mice display a comparable phenotype with about two-fold more circulating granulocytes in the blood stream, the marginated pool, and the spleen. This granulocytosis was independent of increased complement activity. Augmented numbers of Gr-1-positive cells in cell cycle in the bone marrow indicated a higher granulopoietic activity in mice lacking either CD55 or CD97. Concomitant with the increase in blood granulocyte numbers, Cd55 -/- mice challenged with the respiratory pathogen Streptococcus pneumoniae developed less bacteremia and died later after infection.

Conclusions

Collectively, these data suggest that complement-independent interaction of CD55 with CD97 is functionally relevant and involved in granulocyte homeostasis and host defense.  相似文献   

18.
19.

Background

Based on evidence from several other tissues, cartilage stem/progenitor cells in the auricular cartilage presumably contribute to tissue development or homeostasis of the auricle. However, no definitive studies have identified or characterized a stem/progenitor population in mice auricle.

Methodology/Principal Findings

The 5-bromo-2′-deoxyuridine (BrdU) label-retaining technique was used to label dividing cells in fetal mice. Observations one year following the labeling revealed that label-retaining cells (LRCs) were present specifically in auricular perichondrium at a rate of 0.08±0.06%, but LRCs were not present in chondrium. Furthermore, LRCs were successfully isolated and cultivated from auricular cartilage. Immunocytochemical analyses showed that LRCs express CD44 and integrin-α5. These LRCs, putative stem/progenitor cells, possess clonogenicity and chondrogenic capability in vitro.

Conclusions/Significance

We have identified a population of putative cartilage stem/progenitor cells in the auricular perichondrium of mice. Further characterization and utilization of the cell population should improve our understanding of basic cartilage biology and lead to advances in cartilage tissue engineering and novel therapeutic strategies for patients with craniofacial defects, including long-term tissue restoration.  相似文献   

20.

Background

Neurogenic inflammation plays a major role in the pathogenesis of inflammatory bowel disease (IBD). We examined the role of neuropeptide Y (NPY) and neuronal nitric oxide synthase (nNOS) in modulating colitis.

Methods

Colitis was induced by administration of dextran sodium sulphate (3% DSS) or streptomycin pre-treated Salmonella typhimurium (S.T.) in wild type (WT) and NPY (NPY−/−) knockout mice. Colitis was assessed by clinical score, histological score and myeloperoxidase activity. NPY and nNOS expression was assessed by immunostaining. Oxidative stress was assessed by measuring catalase activity, glutathione and nitrite levels. Colonic motility was assessed by isometric muscle recording in WT and DSS-treated mice.

Results

DSS/S.T. induced an increase in enteric neuronal NPY and nNOS expression in WT mice. WT mice were more susceptible to inflammation compared to NPY−/− as indicated by higher clinical & histological scores, and myeloperoxidase (MPO) activity (p<0.01). DSS-WT mice had increased nitrite, decreased glutathione (GSH) levels and increased catalase activity indicating more oxidative stress. The lower histological scores, MPO and chemokine KC in S.T.-treated nNOS−/− and NPY−/−/nNOS−/− mice supported the finding that loss of NPY-induced nNOS attenuated inflammation. The inflammation resulted in chronic impairment of colonic motility in DSS-WT mice. NPY –treated rat enteric neurons in vitro exhibited increased nitrite and TNF-α production.

Conclusions

NPY mediated increase in nNOS is a determinant of oxidative stress and subsequent inflammation. Our study highlights the role of neuronal NPY and nNOS as mediators of inflammatory processes in IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号