首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Macrophages present exogenous Ag either via MHC class I or MHC class II molecules. We investigated whether the mode of hemagglutinin (HA) uptake influences the class of MHC molecule by which this Ag is presented. Normally, HA is ingested by receptor-mediated endocytosis, but this may be switched to macropinocytosis and pinocytosis by adding phorbol esters to the cells. This switch resulted in altered intracellular routing of ingested Ag and a transition from Ag presentation via MHC class II molecules to presentation via MHC class I molecules. Similarly, inhibition of receptor-mediated HA endocytosis, by treating the cells with the HA receptor destroying enzyme neuraminidase, abrogated Ag presentation via MHC class II molecules and induced presentation via MHC class I molecules. If, however, under these conditions, receptor-mediated uptake of HA was restored, by virtue of HA/anti-HA Ab interaction and subsequent uptake of HA via the Fc receptor, presentation via MHC class II was restored as well, whereas presentation of HA via MHC class I molecules was no longer detectable. We conclude that in macrophages the mode of Ag uptake is decisive in determining via which class of MHC molecules Ag is presented: pinocytosis and macropinocytosis produce exclusive presentation of exogenous Ag via MHC class I molecules whereas receptor-mediated endocytosis leads exclusively to presentation via class II molecules.  相似文献   

2.
We investigated the roles of nascent and recycling MHC class II molecules (MHC II) in the presentation of two well-defined I-E(d)-restricted epitopes that are within distinct regions of the influenza virus hemagglutinin (HA) protein. The site 3 epitope (S3; residues 302-313) lies in the stalk region that unfolds in response to mild acidification, while the site 1 epitope (S1; residues 107-119) is situated in the stable globular domain. In a murine B lymphoma cell line and an I-E(d)-transfected fibroblast cell line, presentation from inactivated virus of S3 is inhibited by primaquine, a compound that prevents recycling of cell surface proteins, including MHC II, while S1 presentation is unaffected. In contrast, brefeldin A, an agent that inhibits exit of proteins from the endoplasmic reticulum, selectively inhibited S1 presentation without affecting S3 presentation, suggesting that S1 presentation requires nascent MHC II. The use of agents that perturb endosomal function revealed a requirement for acidification of internalized viral particles for presentation of both epitopes. Notably, all compounds tested had similar effects on presentation of the two epitopes derived from endogenously synthesized HA. Thus, recycling I-E(d) molecules appear to be crucial for capturing and presenting an epitope that is revealed in mild acidic conditions following the uptake of virions or the synthesis of Ag, while nascent I-E(d) molecules are required for presentation of a second epitope located in a structurally constrained region of the same polypeptide. Viral glycoproteins, such as HA, may have been a major impetus for the evolutionary establishment of this recycling pathway.  相似文献   

3.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

4.
Intracellular bacteria can reside in a vacuolar compartment, or they can escape the vacuole and become free living in the cytoplasm. The presentation of Ag by class I MHC molecules has been defined primarily for Ag present in the cytoplasm. It was therefore thought that Ags from bacteria that remain in a vacuole would not be presented by MHC class I molecules. Although some studies have provided data to support this idea, it is not necessarily true for all intracellular bacteria. For example, we have previously demonstrated that an epitope from the p60 protein secreted by LLO- Listeria monocytogenes, which does not reside in the cytoplasm, can be presented by MHC class I molecules to a T cell clone specific for the epitope, p60217-225. We have further examined the route by which Ag secreted by LLO- L. monocytogenes is presented by MHC class I molecules. Using pharmacological inhibitors, we demonstrate that MHC class I presentation of the p60 epitope derived from by LLO- L. monocytogenes requires phagolysosome fusion and processing by the proteasome. Lysosomal cathepsins, however, are not required for processing of the p60 epitope. Similarly, processing of the AttM epitope, secreted by LLO- L. monocytogenes and presented by H2-M3, also requires phagolysosome fusion and cleavage by the proteasome. Thus, p60 and AttM secreted by LLO- L. monocytogenes are processed via the classical class I pathway for presentation by MHC class I molecules.  相似文献   

5.
The unique ether glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264). In contrast, administration of OVA with aluminum hydroxide or entrapped in conventional ester-phospholipid liposomes failed to evoke significant CTL response. The archaeosome-mediated CD8(+) T cell response was primarily perforin dependent because CTL activity was undetectable in perforin-deficient mice. Interestingly, a long-term CTL response was generated with a low Ag dose even in CD4(+) T cell deficient mice, indicating that the archaeosomes could mediate a potent T helper cell-independent CD8(+) T cell response. Macrophages incubated in vitro with OVA archaeosomes strongly stimulated cytokine production by OVA-specific CD8(+) T cells, indicating that archaeosomes efficiently delivered entrapped protein for MHC class I presentation. This processing of Ag was Brefeldin A sensitive, suggesting that the peptides were transported through the endoplasmic reticulum and presented by the cytosolic MHC class I pathway. Finally, archaeosomes induced a potent memory CTL response to OVA even 154 days after immunization. This correlated to strong Ag-specific up-regulation of CD44 on splenic CD8(+) T cells. Thus, delivery of proteins in self-adjuvanting archaeosomes represents a novel strategy for targeting exogenous Ags to the MHC class I pathway for induction of CTL response.  相似文献   

6.
Peptides from extracellular proteins presented on MHC class II are mostly generated and loaded in endolysosomal compartments, but the major pathways responsible for loading peptides from APC-endogenous sources on MHC class II are as yet unclear. In this study, we show that MHC class II molecules present peptides from proteins such as OVA or conalbumin introduced into the cytoplasm by hyperosmotic pinosome lysis, with efficiencies comparable to their presentation via extracellular fluid-phase endocytosis. This cytosolic presentation pathway is sensitive to proteasomal inhibitors, whereas the presentation of exogenous Ags taken up by endocytosis is not. Inhibitors of nonproteasomal cytosolic proteases can also inhibit MHC class II-restricted presentation of cytosolically delivered protein, without inhibiting MHC class I-restricted presentation from the same protein. Cytosolic processing of a soluble fusion protein containing the peptide epitope I-Ealpha(52-68) yields an epitope that is similar to the one generated during constitutive presentation of I-Ealpha as an endogenous transmembrane protein, but is subtly different from the one generated in the exogenous pathway. Constitutive MHC class II-mediated presentation of the endogenous transmembrane protein I-Ealpha is also specifically inhibited over time by inhibitors of cytosolic proteolysis. Thus, Ag processing in the cytoplasm appears to be essential for the efficient presentation of endogenous proteins, even transmembrane ones, on MHC class II, and the proteolytic pathways involved may differ from those used for MHC class I-mediated presentation.  相似文献   

7.
For most nascent glycoprotein Ags, the MHC class I-restricted processing pathway begins in the endoplasmic reticulum (ER). From this location, they are translocated to the cytosol for degradation by the proteasome. A reasonable assumption is that processing of exocytic Ags is less efficient than that of cytosolic Ags, due to the requirement for additional handling, but that the processing pathways for the two types of proteins are otherwise similar. To test this, we compared the presentation of three epitopes within influenza nucleoprotein (NP) when this Ag is targeted to the cytosol or the ER. Surprisingly, under conditions of limited Ag expression, presentation of two proteasome-dependent epitopes is comparable when NP is targeted to the ER while presentation of a third is negatively impacted. Furthermore, presentation of the third epitope is unaffected by the addition of proteasome inhibitor when cytosolic NP is expressed but is significantly enhanced when exocytic NP is expressed. These results indicate that delivery of Ag to the ER need not preclude efficient presentation and that processing of cytosolic and ER-targeted Ag is qualitatively distinct.  相似文献   

8.
MHC class I ligands are recruited from the cytosolic peptide pool, whose size is likely to depend on the balance between peptide generation by the proteasome and peptide degradation by downstream peptidases. We asked what fraction of this pool is available for presentation, and how the size of this fraction is modulated by peptide affinity for the TAP transporters. A model epitope restricted by HLA-A2 and a series of epitope precursors with N-terminal extensions by single residues modifying TAP affinity were expressed in a system that allowed us to monitor and modulate cytosolic peptide copy numbers. We show that presentation varies strongly according to TAP affinities of the epitope precursors. The fraction of cytosolic peptides recruited for MHC presentation does not exceed 1% and is more than two logs lower for peptides with very low TAP affinities. Therefore, TAP affinity has a substantial impact on MHC class I Ag presentation.  相似文献   

9.
Formation of stable class II MHC/peptide complex involves conformational changes and proceeds via an intermediate. Although this intermediate complex forms and dissociates in minutes, its conversion to a stable complex is a very slow process, taking up to a few days to reach completion. Here, we investigate the different steps of this binding and demonstrate that the conformational changes necessary to generate a receptive molecule is the rate-determining slow step in the process, while formation of the stable MHC/peptide complex is very rapid. With HLA-DR1 as our model class II molecule, we first used low affinity variants of hemagglutinin peptide (HA306-318), which lack the principal anchor, to shape the conformation of the MHC and then studied the kinetics of stable binding of HA306-318 to such an induced conformation. We found that the apparent association rate of HA306-318 is equivalent to the dissociation rate of the low affinity peptide. A 4- to 18-fold enhancement in the binding rates of HA306-318 was observed depending on the dissociation rates of the low affinity peptides. These results establish that 1) formation of stable MHC/peptide complexes is very rapid and 2) prior binding of low affinity peptide induces a receptive conformation in MHC for efficient stable peptide binding. Furthermore, in the absence of any free peptide, this receptive molecule rapidly reverts to slow binding behavior toward the subsequently offered peptide. These results have important implications for the roles of low affinity MHC/peptide complexes in Ag presentation.  相似文献   

10.
We have applied MHC class I tetramers representing the two H2(b) MHC class I-restricted epitopes of the mouse male-specific minor transplantation Ag, HY, to directly determine the extent of expansion and immunodominance within the CD8+ T cell compartment following exposure to male tissue. Immunization with male bone marrow (BM), spleen, dendritic cells (DCs) and by skin graft led to rapid expansion of both specificities occupying up to >20% of the CD8+ T cell pool. At a high dose, whole BM or spleen were found to be more effective at stimulating the response than BM-derived DCs. In vivo, immunodominance within the responding cell population was only observed following chronic Ag stimulation, whereas epitope immunodominance was established rapidly following in vitro restimulation. Peptide affinity for the restricting MHC molecule was greater for the immunodominant epitope, suggesting that this might be a factor in the emergence of immunodominance. Using tetramers, we were able to directly visualize the cross-primed CD8+ HY response, but we did not find it to be the principal route for MHC class I presentation. Immunization with female spleen or DCs coated with the full complement of defined HY peptides, including the A(b)-restricted CD4+ Th cell determinant, failed to induce tetramer-reactive cells.  相似文献   

11.
The importance of ubiquitination in MHC class I-restricted Ag processing remains unclear. To address this issue, we overexpressed wild-type and dominant-negative lysineless forms of ubiquitin (Ub) in mammalian cells using an inducible vaccinia virus system. Overexpression of the lysineless Ub nearly abrogated polyubiquitination and potently inhibited epitope presentation from a cytosolic N-end rule substrate as well as endoplasmic reticulum (ER)-targeted model Ags. In contrast, there was little impact on Ag presentation from cytosolic proteins. These trends were location dependent; redirecting cytosolic Ag to the ER rendered presentation lysineless Ub-sensitive, whereas retargeting exocytic Ag to the cytosol had the inverse effect. This dichotomy was further underscored by small interfering RNA knockdown of the ER-associated Ub ligase Hrd1. Thus, Ub-dependent degradation appears to play a major role in the MHC class I-restricted processing of ER-targeted proteins and a more restricted role in the processing of cytosolic proteins.  相似文献   

12.
Ag processing and presentation via MHC class II is essential for activation of CD4(+) T lymphocytes. gamma-IFN-inducible lysosomal thiol reductase (GILT) is present in the MHC class II loading compartment and has been shown to facilitate class II Ag processing and recall responses to Ags containing disulfide bonds such as hen egg lysozyme (HEL). Reduction of proteins within the MHC class II loading compartment is hypothesized to expose residues for class II binding and protease trimming. In vitro analysis has shown that the active site of GILT involves Cys(46) and Cys(49), present in a CXXC motif that shares similarity with the thioredoxin family. To define the functional requirements for GILT in MHC class II Ag processing, a GILT-deficient murine B cell lymphoma line was generated and stably transduced with wild-type and cysteine mutants of GILT. Intracellular flow cytometric, immunoblotting, and immunofluorescence analyses demonstrated that wild-type and mutant GILT were expressed and maintained lysosomal localization. Transduction with wild-type GILT reconstituted MHC class II processing of a GILT-dependent HEL epitope. Mutation of either Cys(46) or Cys(49) abrogated MHC class II processing of a GILT-dependent HEL epitope. In addition, biochemical analysis of these mutants suggested that the active site facilitates processing of precursor GILT to the mature form. Precursor forms of GILT-bearing mutations in Cys(200) or Cys(211), previously found to display thiol reductase activity in vitro, could not mediate Ag processing. These studies demonstrate that the thiol reductase activity of GILT is its essential function in MHC class II-restricted Ag processing.  相似文献   

13.
Knowledge of the events governing Ag processing and epitope selection within APC is key to the development of novel immunotherapeutic strategies for infectious diseases, cancer, and autoimmunity. The influence of disulfides and Ag reduction on the hierarchy of epitope presentation via MHC class II molecules was investigated through studies of a self Ag, IgG kappa. HLA-DR4(+) B cells preferentially present an immunodominant IgG-derived epitope, kappaI, relative to a subdominant kappaII peptide. kappaI contains a cysteine masked within the native Ag via an intrachain disulfide, the latter of which is reduced during Ag processing. Mutagenesis of this cysteine as well as others within kappa minimally perturbed the abundance and overall conformation of IgG. Yet, disruptions in disulfide bonding within this Ag influenced the selective display of class II-restricted dominant and subdominant T cell epitopes. Presentation of the kappaI epitope from both native and variant IgG was dependent upon cellular expression of IFN-gamma-inducible lysosomal thiol reductase. These studies indicate that disulfide bonds regulate Ag processing both locally and at distant sites, thus influencing epitope selection within the class II pathway.  相似文献   

14.
CpG-DNA aided cross-priming by cross-presenting B cells   总被引:5,自引:0,他引:5  
Covalent linkage of immunostimulatory CpG-DNA to OVA (CpG-OVA complex) results in CpG-DNA-aided cross-presentation of OVA by dendritic cells (DCs). In this study, we analyzed the thesis that CpG-OVA complexes may be cross-presented by B cells to route internalized Ag into the class I MHC presentation pathway. First, we describe that conjugation of CpG-DNA to OVA enhances up to 40-fold internalization of OVA by B cells, which in turn generate the CD8 T cell epitope SIINFEKL complexed to MHC class I, albeit less efficiently than DCs. Furthermore, upon internalization, CpG-DNA conjugated to OVA stimulates B cells to up-regulate costimulatory molecules and cytokines including IL-12. Adoptive transfer of CpG-OVA complex-loaded wild-type B cells cross-primes naive CD8 T cells both in wild-type mice and in MyD88-deficient mice. Overall, these findings disclose attributes of B cells, including cross-presentation of exogenous Ag and cross-priming of naive CD8 T cells that hitherto have been considered as hallmarks restricted to DCs.  相似文献   

15.
The enzymes that degrade proteins to peptides for presentation on MHC class II molecules are poorly understood. The cysteinal lysosomal proteases, cathepsin L (CL) and cathepsin S (CS), have been shown to process invariant chain, thereby facilitating MHC class II maturation. However, their role in Ag processing is not established. To examine this issue, we generated embryonic fibroblast lines that express CL, CS, or neither. Expression of CL or CS mediates efficient degradation of invariant chain as expected. Ag presentation was evaluated using T cell hybridoma assays as well as mass spectroscopic analysis of peptides eluted from MHC class II molecules. Interestingly, we found that the majority of peptides are presented regardless of CL or CS expression, although these proteases often alter the relative levels of the peptides. However, for a subset of Ags, epitope generation is critically regulated by CL or CS. This result suggests that these cysteinal proteases participate in Ag processing and generate qualitative and quantitative differences in the peptide repertoires displayed by MHC class II molecules.  相似文献   

16.
CD4 Th cells are critical to the development of coordinated immune responses to infections and tumors. Th cells are activated through interactions of the TCR with MHC class II complexed with peptide. T cell activation is dependent on the density of MHC peptide complexes as well as the duration of interaction of the TCR with APCs. In this study, we sought to determine whether MHC class II peptides could be modified with amino acid sequences that facilitated uptake and presentation with the goal of improving Th cell activation in vitro and in vivo. A model epitope derived from the murine folate receptor α, a self- and tumor Ag, was modified at its carboxyl terminus with the invariant chain-derived Ii-Key peptide and at its N terminus with a peptide that enhances uptake of Ag by APC. Modification of a peptide resulted in enhanced generation of high-avidity murine folate receptor α T cells that persisted in vivo and homed to sites of Ag deposition. The nesting approach was epitope and species independent and specifically excluded expansion of CD4 regulatory T cells. The resulting Th cells were therapeutic, enhanced in vivo helper activity and had an increased ability to resist tolerizing immune microenvironments. In addition to improved immunoadjuvants, this epitope modification strategy may be useful for enhancing ex vivo and in vivo generation of Th cells for preventing and treating diseases.  相似文献   

17.
The B-subunit component of Escherichia coli heat-labile enterotoxin (EtxB), which binds to cell surface GM1 ganglioside receptors, was recently shown to be a highly effective vehicle for delivery of conjugated peptides into the major histocompatibility complex (MHC) class I pathway. In this study we have investigated the pathway of epitope delivery. The peptides used contained the epitope either located at the C terminus or with a C-terminal extension. Pretreatment of cells with cholesterol-disrupting agents blocked transport of EtxB conjugates to the Golgi/endoplasmic reticulum, but did not affect EtxB-mediated MHC class I presentation. Under these conditions, EtxB conjugates entered EEA1-positive early endosomes where peptides were cleaved and translocated into the cytosol. Endosome acidification was required for epitope presentation. Purified 20 S immunoproteasomes were able to generate the epitope from peptides in vitro, but 26 S proteasomes were not. Only presentation from the C-terminal extended peptide was proteasome-dependent in cells, and this was found to be significantly slower than presentation from peptides with the epitope at the C terminus. These results implicate the proteasome in the generation of the correct C terminus of the epitope and are consistent with proteasome-independent N-terminal trimming. Epitope presentation was blocked in a TAP-deficient cell line, providing further evidence that conjugated peptides enter the cytosol as well as demonstrating a requirement for the peptide transporter. Our findings demonstrate the utility of EtxB-mediated peptide delivery for rapid and efficient loading of MHC class I epitopes in several different cell types. Conjugated peptides are released from early endosomes into the cytosol where they gain access to proteasomes and TAP in the "classical" pathway of class I presentation.  相似文献   

18.
Heat shock proteins (HSP) are conserved proteins, many of which share the ability for indiscriminate peptide binding and ATPase-coupled peptide release. In this paper, we show that heat shock cognate protein (HSC)73, a constitutively expressed member of the HSP70 family, could be a candidate for chaperone activity within the MHC class II presentation pathway. HSC73 expression in macrophages was shown to overlap with expression of MHC class II; overexpression of HSC73 in stable transfectants of a macrophage line markedly enhanced their presentation of exogenous Ag without affecting presentation of processing independent peptide. Ag from an exogenous source was demonstrated to associate with HSC73 in macrophages, and this association was sensitive to ATP treatment and inhibited by deoxyspergualin, an immunosuppressive agent that has previously been shown to bind specifically to HSC73. Furthermore, deoxyspergualin reduced Ag presentation by macrophages in relation to the amount of HSC73 expressed in these cells. The data are consistent with a potential role for HSC73 in binding and protecting peptides from extensive degradation and/or facilitating the kinetics of peptide transfer to MHC class II molecules.  相似文献   

19.
Tripeptidyl peptidase II (TPPII) is an oligopeptidase forming giant complexes in the cytosol that have high exo-, but also, endoproteolytic activity. Immunohistochemically, the complexes appear as distinct foci in the cytosol. In part controversial biochemical and functional studies have suggested that TPPII contributes, on the one hand, positively to Ag processing by generating epitope carboxyl termini or by trimming epitope precursors, and, on the other, negatively by destroying potentially antigenic peptides. To clarify which of these roles is predominant, we generated and analyzed TPPII-deficient mice. Cell surface levels of MHC class I peptide complexes tended to be increased on most cell types of these mice. Although presentation of three individual epitopes derived from lymphocytic choriomeningitis virus was not elevated on TPPII-/- cells, that of the immunodominant OVA epitope SIINFEKL was significantly enhanced. Consistent with this, degradation of a synthetic peptide corresponding to the OVA epitope and of another corresponding to a precursor thereof, both being proteasomally generated OVA fragments, was delayed in TPPII-deficient cytosolic extracts. In addition, dendritic cell cross-presentation of phagocytosed OVA and of OVA internalized as an immune complex was increased to about the same level as direct presentation of the Ag. The data suggest a moderate, predominantly destructive role of TPPII in class I Ag processing, in line with our finding that TPPII is not induced by IFN-gamma, which up-regulates numerous, predominantly constructive components of the Ag processing and presentation machinery.  相似文献   

20.
T cell reactivity toward self MHC class II molecules has been recognized in syngeneic MLR in a number of studies, where the T cells are believed to recognize the combination of self/nonself peptide and self MHC molecule. We investigated the stimulation of T cell proliferation by synthetic peptides of sequences corresponding to the first polymorphic amino terminal domain of alpha- and beta-chains of self I-A molecules. Both unprimed and primed T cells responded to a number of peptides of alpha 1 and beta 1 domains of self I-Ad molecules. The response was dependent on the presentation of I-Ad peptides by syngeneic APC and was blocked by anti-class II MHC mAb. Upon further investigation it was observed that I-Ad peptides could inhibit the stimulation of Ag-specific MHC class II-restricted T cell hybridoma due to self presentation of peptides rather than to direct binding of free peptides to the TCR, further supporting their affinity/interaction with intact self MHC class II molecules. The peptide I-A beta d 62-78 showed high affinity toward intact self MHC II molecule as determined by the inhibition of Ag-specific T cell stimulation and yet was nonstimulatory for syngeneic T cells, therefore representing an MHC determinant that may have induced self tolerance. Thus we have shown that strong T cell proliferative responses can be generated in normal mice against the peptides derived from self MHC class II molecules and these cells are part of the normal T cell repertoire. Therefore complete tolerance toward potentially powerful immunodominant but cryptic determinants of self Ag may not be necessary to prevent autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号