首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6+/+ and IL-6−/− mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6−/− compared with IL-6+/+ bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6−/− earlier than IL-6+/+ marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6−/− marrow. In the skeletal system, although intermittent PTH administration to IL-6+/+ and IL-6−/− mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.  相似文献   

2.
N Banu  B Deng  S D Lyman  H Avraham 《Cytokine》1999,11(9):679-688
The Flt-3 receptor is expressed in primitive haematopoietic cells and its ligand exerts proliferative effects on these cells in vitro in synergy with other cytokines. To increase our knowledge of the functional properties of the human Flt-3 ligand (FL) as relating to in vitro expansion of haematopoietic stem cells, the effects on murine haematopoiesis of FL alone or in combination with other growth factors were studied. Analysis of Flk-2/Flt-3 mRNA expression indicated that Flk-2/Flt-3 was preferentially expressed in primitive haematopoietic cell populations. To examine the expression of the Flk-2/Flt-3 receptor on megakaryocyte progenitors (CFU-Meg), Flk-2/Flt-3 positive and negative CD34(+)populations were separated from human bone marrow and cultured in a plasma clot culture system. CFU-Meg colonies were found in the Flk-2/Flt-3 negative fraction. Myeloid (CFU-GM) derived colonies appeared in the presence of FL alone. Neither FL+IL-3 nor FL+IL-3+IL-6 had any effect on the generation of megakaryocyte colonies (CFU-MK), due to the lack of FL receptor expression on megakaryocyte progenitors. Bone marrow cells remaining after 5-fluorouracil (5-FU) treatment of mice represent a very primitive population of progenitors enriched for reconstituting stem cells. This cell population expressed FL receptors, as revealed by RT-PCR analysis. Addition of FL alone did not enhance the replication of such cells in liquid cultures as compared to controls. However, a significantly greater generation of myeloid progenitors (CFU-GM) in clonogenic assays was observed in the presence of FL+IL-3, FL+GM-CSF or FL+CSF-1. In addition, the effects of FL on in vitro expansion of murine haematopoietic stem cells were studied using lineage-negative (lin(-)) Sca-1 positive (Sca-1(+)) c-kit positive (c-kit(+)) marrow cells from 5-FU treated mice. FL enhanced the survival of primitive murine lin(-)Sca-1(+)c-kit(+)cells. FL and IL-6 were able to significantly expand murine progenitor stem cells in vitro and promote their survival. These studies strongly suggest that FL significantly and selectively enhanced the generation of myeloid progenitors in vitro and increased myeloid progenitor responsiveness to later acting growth factors. In addition, FL synergized with IL-6 to support in vitro expansion of haematopoietic progenitors and promoted the survival of lin(-)Sca-1(+)c-kit(+)cells.  相似文献   

3.
The cyclin-dependent kinase inhibitor p27(Kip1) is a critical regulator of T cell proliferation. To further examine the relationship of T cell proliferation and differentiation, we examined the ability of T cells deficient in p27(Kip1) to differentiate into Th subsets. We observed increased Th2 differentiation in p27(Kip1)-deficient cultures. In addition to increases in CD4(+) and CD8(+) T cells, there is a similar increase in gamma delta T cells in p27(Kip1)-deficient mice compared with wild-type mice. The increase in Th2 differentiation is correlated to an increase of IL-4 secretion by CD4(+)DX5(+)TCR alpha beta(+)CD62L(low) T cells but not to increased expansion of differentiating Th2 cells. While STAT4- and STAT6-deficient T cells have diminished proliferative responses to IL-12 and IL-4, respectively, proliferative responses are increased in T cells doubly deficient in p27(Kip1) and STAT4 or STAT6. In contrast, the increased proliferation and differentiative capacity of p27(Kip1)-deficient T cells has no effect on the ability of STAT4/p27(Kip1)- or STAT6/p27(Kip1)-deficient CD4(+) cells to differentiate into Th1 or Th2 cells, respectively. Thus, while p27(Kip1) regulates the expansion and homeostasis of several T cell subsets, it does not affect the differentiation of Th subsets.  相似文献   

4.
The present study was undertaken to define parameters that may limit the cytokine-mediated expansion of primitive hematopoietic cells in stirred suspension cultures of normal human marrow cells. In a first series of experiments, parallel measurements of the rate and extent of progenitor expansion and cytokine depletion from the medium were made for such cultures in which the cells were exposed to different cytokine concentrations. Supplementation of the medium with 2 ng/mL of interleukin-3 (IL-3), IL-6 and IL-11 plus 10 ng/mL of Flt-3 ligand (FL) and Steel factor (SF) allowed a 45-fold expansion of directly clonogenic cell (CFC) numbers within 2 weeks along with a 2.5-fold expansion of their precursors, detectable as longterm culture-initiating cells (LTC-IC). The addition of 5-fold higher levels of these cytokines enhanced the 2 week output of both CFC and LTC-IC numbers (to 66-fold and 9-fold above input respectively). However, this was also associated with an increase in the individual average rates of depletion of immunoreactive IL-3, SF and FL. As a result, even biweekly addition of fresh medium supplemented with the highest concentrations of cytokines tested failed to prevent a continuing decline in their levels relative to the input medium levels. A similar dependence of the IL-3 depletion rate on its extracellular concentration was demonstrable in suspension cultures of Mo7e cells, an IL-3-dependent human leukemic cell line.Additional experiments with various highly purified marrow cell fractions showed that the rate of cytokine depletion varied according to the type of responding cell as well as the specific cytokine. CD34(+)CD38(-) cells exhibited the greatest average cell-specific cytokine depletion rates (35-fold higher than unseparated bone marrow cells). These findings establish new principles that will be important for the optimization of hematopoietic cell bioreactors. In addition, they suggest that cytokine depletion may provide a novel feedback control mechanism in vivo which would contribute to the control of primitive hematopoietic cell proliferation and differentiation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 58-66, 1997.  相似文献   

5.
Modelling of ex vivo expansion/maintenance of hematopoietic stem cells   总被引:1,自引:0,他引:1  
In this study, we described the modelling of the expansion/maintenance of human hematopoietic stem/progenitor cells from adult human bone marrow. CD 34(+)-enriched cell populations from bone marrow were cultured in the presence and absence of human stroma in serum-free media containing bFGF, SCF, LIF and Flt-3 ligand for several days. The cells in the culture were analysed for expansion and phenotype by flow cytometry. Although significant expansion of bone marrow cultures occurred in the presence and absence of human stroma, the results of expansion were effectively better in the presence of a stromal layer. In both situations the phenotypic analysis demonstrated a great expansion of CD 34(+)38(-) cells. The differentiative potential of bone marrow CD 34(+) cells co-cultured with human stroma was primarily shifted towards the myeloid lineage with the presence of CD 15 and CD 33.  相似文献   

6.
T lymphocyte growth is regulated by the cyclin-dependent kinase inhibitor p27(Kip1). Mice deficient in p27(Kip1) have increased proliferative responses to multiple cytokines, including IL-2, IL-4, and IL-12, but not to anti-CD3. In the absence of p27(Kip1), T cells proliferate faster than control cells, as evidenced by increased [(3)H]thymidine uptake, increased cell growth and division, and an increased number of cells in S phase. Importantly, this regulation is specific for p27(Kip1) in T cells, because hyperproliferation of T cells from mice deficient in p21(Cip1/Waf1) was not observed. In vivo, there is an expansion of activated/memory CD4(+) cells in p27(Kip1)-deficient mice before and after immunization. Furthermore, Ag-stimulated spleen cells from immunized p27(Kip1)-deficient mice demonstrated increased proliferative responses to IL-2 and increased secretion of IFN-gamma. Although IL-4 stimulated proliferative responses are diminished in Stat6-deficient T cells, activated T cells from mice doubly deficient in both p27(Kip1) and Stat6 recover normal proliferative responses to IL-4. Together, these data firmly support a role for p27(Kip1) as a negative regulator of cytokine-stimulated T cell growth.  相似文献   

7.
Bacterial infection can affect hematopoietic precursor cells in bone marrow, because the infected tissues produce various cytokines and chemokines. Little is known about hematopoietic precursor cells, including hematopoietic stem cells and their progenitors, during mycobacterial infection. Here, we showed that mycobacterial infections result in the expansion of not only the lin-c-kit+sca-1+ (LKS+) cell population, but also granulocyte-monocyte progenitor cells in a chronic murine tuberculosis model. Interestingly, stimulation of LKS+ cells with attenuated Mycobacterium tuberculosis H37Ra culture filtrate (RaCF) was significantly stronger than that by virulent H37Rv culture filtrate (RvCF). Lower TNF-α and IL-6 levels were observed in RvCF-stimulated bone marrow cells. Neutralization of TNF-α or IL-6 in RaCF-stimulated bone marrow cells markedly suppressed LKS+ cell clonal expansion. Additionally, numbers of LKS+ cells were lower in TLR2(-/-) and MyD88(-/-) mice after mycobacterial infection. Taken together, LKS+ cell proliferation related to mycobacterial virulence may be related to the secretion of TNF-α and IL-6 associated with TLR signaling. Expansion of hematopoietic progenitor cells may, therefore, play an important role during mycobacterial infection.  相似文献   

8.
microRNA-155 (miR155) is a central regulator of immune responses that is induced by inflammatory mediators. Although miR155 is considered to be a pro-inflammatory microRNA, in vitro reports show anti-inflammatory effects in lipid-loaded cells. In this study we examined the role of miR155 in atherosclerosis in vivo using bone marrow transplantation from miR155 deficient or wildtype mice to hyperlipidemic mice. Hematopoietic deficiency of miR155 enhanced atherosclerotic plaque development and decreased plaque stability, as evidenced by increased myeloid inflammatory cell recruitment to the plaque. The increased inflammatory state was mirrored by a decrease in circulating CD4(+)CD25(+)FoxP3(+) regulatory T cells, and an increase in granulocytes (CD11b(+)Ly6G(+)) in blood of miR155(-/-) transplanted mice. Moreover, we show for the first time a crucial role of miR155 in monocyte subset differentiation, since hematopoietic deficiency of miR155 increases the 'inflammatory' monocyte subset (CD11b(+)Ly6G(-)Ly6C(hi)) and reduces 'resident' monocytes (CD11b(+)Ly6G(-)Ly6C(low)) in the circulation. Furthermore, cytokine production by resident peritoneal macrophages of miR155(-/-) transplanted hyperlipidemic mice was skewed towards a more pro-inflammatory state since anti-inflammatory IL-10 production was reduced. In conclusion, in this hyperlipidemic mouse model miR155 acts as an anti-inflammatory, atheroprotective microRNA. Additionally, besides a known role in lymphoid cell development, we show a crucial role of miR155 in myeloid lineage differentiation.  相似文献   

9.
目的:利用IL-33转基因小鼠研究IL-33对造血干/祖细胞的增殖和分化影响。方法利用流式细胞仪分析IL-33转基因小鼠及同窝野生对照小鼠的外周血、脾脏、骨髓细胞的免疫表型及造血干细胞分化不同阶段细胞的数量变化;利用体外成克隆实验和细胞周期分析研究IL-33对于造血干细胞增殖能力的影响。结果与野生型小鼠相比,IL-33转基因小鼠B细胞和T细胞在外周血中都明显降低,粒细胞在外周血和骨髓中都有明显增加;IL-33转基因小鼠的骨髓造血干细胞和多能祖细胞数量减少,共同淋系祖细胞数量减少,共同髓系祖细胞和粒单系祖细胞数量增加;IL-33转基因小鼠的造血干细胞处于S-G2-M的细胞增多;体外单克隆实验发现IL-33转基因小鼠造血干细胞形成的集落数增加。结论 IL-33转基因小鼠造血干细胞增殖能力增强,更易向髓系细胞分化。  相似文献   

10.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

11.
Bultinck J  Brouckaert P  Cauwels A 《Cytokine》2006,36(3-4):160-166
Sepsis is a systemic inflammatory response syndrome resulting from an inappropriate innate immune response to infection. TNF and interleukin (IL)-6 are critically involved in this syndrome and although conclusive in vivo evidence is missing, innate immune cells are believed to be the principal producers of these cytokines. We investigated this assumption by performing bone marrow transplantations (BMT) between LPS-sensitive (C3H/HeN) and LPS-hyporesponsive (C3H/HeJ) mice. For adequate LPS-induced systemic TNF production, the hematopoietic cell population was absolutely required. In contrast, IL-6 could be detected in the circulation of LPS-treated chimeric mice, of which either the hematopoietic or the parenchymal cell population was hyporesponsive to LPS. So, whereas hematopoietic cells are the sole source of systemic TNF in an LPS-induced model of sepsis, both hematopoietic and parenchymal cells are required for systemic IL-6 production. Moreover, LPS-induced IL-6 production in parenchymal cells may be partially mediated by the TNF/TNF-R1 pathway as evidenced by the systemic IL-6 levels in LPS-treated wild type (WT), TNF-R1-deficient and chimeric mice.  相似文献   

12.
BACKGROUND: In vitro incubation of murine BM cells with IL-3, IL-6, IL-11 and SCF induces expansion of HPC but fails to preserve 'engraftability' in comparison with normal untreated marrow cells. We studied how culturing marrow cells for 48 and 72 h with a combination of the cytokines SCF and Flt3L influences cell expansion and engraftability. METHODS: Competitive repopulation of lethally irradiated C57BL/6 mice was used to examine engraftability of ex vivo cytokine-expanded Ptprc chimeric BM. A methylcellulose in vitro assay was used to determine the expansion of substitute progenitors. RESULTS: Both cytokine combinations successfully expanded progenitor populations when assayed in methylcellulose culture in vitro. After 72 h, the colony numbers of the expansion cultures increased 61% with IL-3, IL-6, IL-11 and SCF stimulation and 96% with SCF and Flt3L stimulation. Engraftment of competitively transplanted cells, cultured with IL-3, IL-6, IL-11 and SCF, consistently dropped to levels below 16%. However, 48 h culture with SCF and Flt3L resulted in 53.5+/-1.6% engraftment at 17 days and 64+/-3.7% engraftment at 19 weeks post-transplantation. Extending the cytokine exposure to 72 h resulted in 70+/-4.4% short-term engraftment at 17 days, and 64+/-2.4% engraftment at 19 weeks post-transplantation. DISCUSSION: The data demonstrate the ability of SCF and Flt3L cytokine-stimulated BM cells to maintain short- and long-term engraftability. We conclude that these cytokines play a crucial role in maintaining engraftment of hematopoietic progenitors.  相似文献   

13.
Deficient thymopoiesis and retarded recovery of newly developed CD4(+) T cells is one of the most important determinants of impaired immunocompetence after hemopoietic stem cell transplantation. Here we evaluated whether Fms-like tyrosine kinase 3 (Flt3) ligand (FL) alone or combined with IL-7 affects T cell recovery, thymopoiesis, and lymphoid progenitor expansion following bone marrow transplantation in immunodeficient mice. FL strongly accelerated and enhanced the recovery of peripheral T cells after transplantation of a low number of bone marrow cells. An additive effect on T cell recovery was not observed after coadministration of IL-7. Lineage(-)sca-1(+)c-kit(+)flt3(+) lymphoid progenitor cell numbers were significantly increased in bone marrow of FL-treated mice before recovery of thymopoiesis. Thymocyte differentiation was advanced to more mature stages after FL treatment. Improved T cell recovery resulted in better immunocompetence against a post-bone marrow transplantation murine CMV infection. Collectively, our data suggest that FL promotes T cell recovery by enhanced thymopoiesis and by expansion of lymphoid progenitors.  相似文献   

14.
We generated transgenic mice expressing chimeric receptors, which comprise extracellular domains of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor and transmembrane and cytoplasmic domains of the mouse leukemia inhibitory factor receptor. In suspension cultures of lineage-negative (Lin(-)), 5-fluorouracil-resistant bone marrow cells of the transgenic mice, a combination of hGM-CSF and stem cell factor (SCF) induced exponential expansions of mixed colony-forming unit. The combination of hGM-CSF and SCF was effective on enriched, Lin(-)Sca-1(+)c-kit(+) progenitors and increased either mixed colony-forming unit or cobblestone area-forming cells. In case of stimulation with hGM-CSF and SCF, interleukin-6 (IL-6) and SCF, or IL-11 and SCF, the most efficient expansion was achieved with hGM-CSF and SCF. When Lin(-)Sca-1(+)c-kit(+)CD34(-) further enriched progenitors were clone sorted and individually incubated in the presence of SCF, hGM-CSF stimulated a larger number of cells than did IL-6, IL-6 and soluble IL-6 receptor (IL-6R), or IL-11. These data suggest the presence of IL-6Ralpha-, IL-11Ralpha-, and gp130-low to -negative primitive hematopoietic progenitors. Such primitive progenitors are equipped with signal transduction molecules and can expand when these chimeric receptors are genetically introduced into the cells and stimulated with hGM-CSF in the presence of SCF.  相似文献   

15.
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3(+) regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1(-/-) mice; however, more severe disease was induced in EBI3(-/-)Rag1(-/-) mice than in Rag1(-/-) mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4(+)Foxp3(+) Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3(-/-) mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.  相似文献   

16.
Bruton's tyrosine kinase (Btk) is a cytoplasmic signaling molecule that is crucial for precursor (pre-B) cell differentiation in humans. In this study, we show that during the transition of large cycling to small resting pre-B cells in the mouse, Btk-deficient cells failed to efficiently modulate the expression of CD43, surrogate L chain, CD2, and CD25. In an analysis of the kinetics of pre-B cell differentiation in vivo, Btk-deficient cells manifested a specific developmental delay within the small pre-B cell compartment of about 3 h, when compared with wild-type cells. Likewise, in in vitro bone marrow cultures, Btk-deficient large cycling pre-B cells showed increased IL-7 mediated expansion and reduced developmental progression into noncycling CD2(+)CD25(+) surrogate L chain-negative small pre-B cells and subsequently into Ig-positive B cells. Furthermore, the absence of Btk resulted in increased proliferative responses to IL-7 in recombination-activating gene-1-deficient pro-B cells. These findings identify a novel role for Btk in the regulation of the differentiation stage-specific modulation of IL-7 responsiveness in pro-B and pre-B cells. Moreover, our results show that Btk is critical for an efficient transit through the small pre-B cell compartment, thereby regulating cell surface phenotype changes during the developmental progression of cytoplasmic mu H chain expressing pre-B cells into immature IgM(+) B cells.  相似文献   

17.
Continuous elevation of parathyroid hormone (PTH) increases osteoclast precursors, the number of osteoclasts on cancellous bone, and bone turnover. The essential molecular mediators of these effects are controversial, however, and both increased receptor activator of NF-kappaB ligand (RANKL) and IL-6 have been implicated. The goal of these studies was to determine whether continuous elevation of endogenous PTH alters IL-6 gene expression in vivo and whether IL-6 is required for PTH-induced bone loss. To accomplish this, we generated transgenic mice harboring a luciferase reporter gene under the control of IL-6 gene regulatory regions to allow accurate quantification of IL-6 gene activity in vivo. In these mice, induction of secondary hyperparathyroidism using a calcium-deficient diet did not alter IL-6-luciferase transgene expression, whereas RANKL mRNA expression was elevated in bone tissue. Moreover, secondary hyperparathyroidism induced an equivalent amount of bone loss in wild-type and IL-6-deficient mice, and PTH elevated RANKL mRNA and osteoclast formation to the same extent in bone marrow cultures derived from wild-type and IL-6-deficient mice. These results demonstrate that IL-6 is not required for the osteoclast formation and bone loss that accompanies continuous elevation of PTH.  相似文献   

18.
Peripheral CD103(+)Foxp3(+) regulatory T cells (Tregs) can develop both from conventional naive T cells upon cognate Ag delivery under tolerogenic conditions and from thymic-derived, expanded/differentiated natural Tregs. We here show that CD47 expression, a marker of self on hematopoietic cells, selectively regulated CD103(+)Foxp3(+) Treg homeostasis at the steady state. First, the proportion of effector/memory-like (CD44(high)CD62L(low)) CD103(+)Foxp3(+) Tregs rapidly augmented with age in CD47-deficient mice (CD47(-/-)) as compared with age-matched control littermates. Yet, the percentage of quiescent (CD44(low)CD62L(high)) CD103(-)Foxp3(+) Tregs remained stable. Second, the increased proliferation rate (BrdU incorporation) observed within the CD47(-/-)Foxp3(+) Treg subpopulation was restricted to those Tregs expressing CD103. Third, CD47(-/-) Tregs maintained a normal suppressive function in vitro and in vivo and their increased proportion in old mice led to a decline of Ag-specific T cell responses. Thus, sustained CD47 expression throughout life is critical to avoid an excessive expansion of CD103(+) Tregs that may overwhelmingly inhibit Ag-specific T cell responses.  相似文献   

19.
We have previously reported that interleukin 1 (IL-1) administration 20 hr before irradiation protects mice from lethal effects of radiation. The recovery of total nucleated bone marrow cells and of hematopoietic progenitor cells was enhanced in IL-1 treated, as compared to untreated, irradiated mice. This suggested that IL-1 administration may affect the cells in the bone marrow of normal mice. Intraperitoneal administration of recombinant IL-1 resulted in bone marrow cell enlargement and increased cycling of these enlarged cells. In addition, the capacity of bone marrow cells from IL-1 treated mice to proliferate in response to granulocyte macrophage-colony-stimulating factor (GM-CSF) in cell suspension cultures was enhanced. The above effects were not genetically restricted as C57BL/6, B6D2F1, C3H/HeN, and C3H/HeJ mice showed similar responses. A comparative study showed that 100 ng of IL-1 was much more effective in stimulating bone marrow cells by the above criteria than 5 micrograms GM-CSF. Since IL-1, unlike CSF, can not be demonstrated to have a direct in vitro stimulatory effect on bone marrow cells, the aforementioned in vivo effects of IL-1 are presumably mediated by other hematopoietic growth factors. We have previously shown that IL-1 induces the appearance of high titers of CSF in the serum. Consequently hematopoietic growth factors that are generated at local sites following IL-1 administration may mediate the observed cell cycling effect.  相似文献   

20.
Human bone marrow cells expressing CD34 but not HLA-DR were isolated by immunofluorescence flow cytometric cell sorting. These cells contained a hematopoietic cell (CFU-B1) capable of producing, in an in vitro semisolid culture system, blast-cell-containing colonies, which possessed the capacity for self-renewal and commitment to multipotential differentiation. In addition, CD34+ HLA-DR- marrow cells contained primitive megakaryocyte progenitor cells, the burst-forming unit-megakaryocyte (BFU-MK). A subset of CD34+ HLA-DR- marrow cells lacking the expression of CD15 and CD71 was obtained by flow cytometric cell sorting and was capable of sustaining in vitro hematopoiesis in suspension culture for up to 8 weeks in the absence of a preestablished adherent marrow cell layer. The combination of IL-3 + IL-1 alpha and IL-3 + IL-6 sustained proliferation of these cells for 8 weeks, induced maximal cellular expansion, and increased the numbers of assayable progenitor cells. These studies demonstrate that human CD34+ HLA-DR- marrow cells and their subsets contain primitive multipotential hematopoietic cells capable of self-renewal and of differentiation into multiple hematopoietic lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号