首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《PloS one》2013,8(7)

Objectives

To compare the dopaminergic neuronal imaging features of different subtypes of genetic Parkinson''s Disease.

Methods

A retrospective study of genetic Parkinson''s diseases cases in which DaTSCAN (123I-FP-CIT) had been performed. Specific non-displaceable binding was calculated for bilateral caudate and putamen for each case. The right:left asymmetry index and striatal asymmetry index was calculated.

Results

Scans were available from 37 cases of monogenetic Parkinson''s disease (7 glucocerebrosidase (GBA) mutations, 8 alpha-synuclein, 3 LRRK2, 7 PINK1, 12 Parkin). The asymmetry of radioligand uptake for Parkinson''s disease with GBA or LRRK2 mutations was greater than that for Parkinson''s disease with alpha synuclein, PINK1 or Parkin mutations.

Conclusions

The asymmetry of radioligand uptake in Parkinsons disease associated with GBA or LRRK2 mutations suggests that interactions with additional genetic or environmental factors may be associated with dopaminergic neuronal loss.  相似文献   

2.
Zach S  Felk S  Gillardon F 《PloS one》2010,5(10):e13191

Background

Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson''s disease, however, the underlying pathogenic mechanisms are poorly understood. Several in vitro studies have shown that the most frequent mutation, LRRK2(G2019S), increases kinase activity and impairs neuronal survival. LRRK2 has been linked to the mitogen-activated protein kinase kinase kinase family and the receptor-interacting protein kinases based on sequence similarity within the kinase domain and in vitro substrate phosphorylation.

Methodology/Principal Findings

We used an unbiased proteomic approach to identify the kinase signaling pathways wherein LRRK2 may be active. By incubation of protein microarrays containing 260 signal transduction proteins we detected four arrayed Ste20 serine/threonine kinase family members (TAOK3, STK3, STK24, STK25) as novel LRRK2 substrates and LRRK2 interacting proteins, respectively. Moreover, we found that protein kinase C (PKC) zeta binds and phosphorylates LRRK2 both in vitro and in vivo.

Conclusions/Significance

Ste20 kinases and PKC zeta contribute to neuronal Tau phosphorylation, neurite outgrowth and synaptic plasticity under physiological conditions. Our data suggest that these kinases may also be involved in synaptic dysfunction and neurite fragmentation in transgenic mice and in human PD patients carrying toxic gain-of-function LRRK2 mutations.  相似文献   

3.

Background

Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson''s disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment.

Methodology/Principal Findings

In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2-deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/− cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2-deficient stem cells in culture.

Conclusion/Significance

Parkinson''s disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in other mouse models of chronic neurodegenerative diseases.  相似文献   

4.
Li X  Wang QJ  Pan N  Lee S  Zhao Y  Chait BT  Yue Z 《PloS one》2011,6(3):e17153

Background

Recent studies show that mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the cause of the most common inherited and some sporadic forms of Parkinson''s disease (PD). The molecular mechanism underlying the pathogenic role of LRRK2 mutations in PD remains unknown.

Methodology/Principal Findings

Using affinity purification and mass spectrometric analysis, we investigated phosphorylation sites and binding proteins of LRRK2 purified from mouse brain. We identified multiple phosphorylation sites at N-terminus of LRRK2 including S910, S912, S935 and S973. Focusing on the high stoichiometry S935 phosphorylation site, we developed an anti-pS935 specific antibody and showed that LRRK2 is constitutively phosphorylated at S935 in various tissues (including brain) and at different ages in mice. We find that 14-3-3 proteins (especially isoforms γ and η) bind LRRK2 and this binding depends on phosphorylation of S935. The binding of 14-3-3, with little effect on dimer formation of LRRK2, confers protection of the phosphorylation status of S935. Furthermore, we show that protein kinase A (PKA), but not LRRK2 kinase itself, can cause the phosphorylation of LRRK2 at S935 in vitro and in cell culture, suggesting that PKA is a potential upstream kinase that regulates LRRK2 function. Finally, our study indicates that the common PD-related mutations of LRRK2, R1441G, Y1699C and G2019S, decrease homeostatic phosphorylation levels of S935 and impair 14-3-3 binding of LRRK2.

Conclusions/Significance

LRRK2 is extensively phosphorylated in vivo, and the phosphorylation of specific sites (e.g. S935) determines 14-3-3 binding of LRRK2. We propose that 14-3-3 is an important regulator of LRRK2-mediated cellular functions. Our study suggests that PKA, a cAMP-dependent kinase involved in regulating dopamine physiology, is a potential upstream kinase that phosphorylates LRRK2 at S935. Furthermore, the reduction of phosphorylation/14-3-3 binding of LRRK2 due to the common familial PD-related mutations provides novel insight into the pathogenic mechanism of LRRK2-linked PD.  相似文献   

5.

Background

Parkinson's disease (PD) is the most prevalent incurable neurodegenerative movement disorder. Mutations in LRRK2 are associated with both autosomal dominant familial and sporadic forms of PD. LRRK2 encodes a large putative serine/threonine kinase with GTPase activity. Increased LRRK2 kinase activity plays a critical role in pathogenic LRRK2 mutant-induced neurodegeneration in vitro. Little is known about the physiological function of LRRK2.

Results

We have recently identified a Drosophila line with a P-element insertion in an ortholog gene of human LRRK2 (dLRRK). The insertion results in a truncated Drosophila LRRK variant with N-terminal 1290 amino acids but lacking C-terminal kinase domain. The homozygous mutant fly develops normally with normal life span as well as unchanged number and pattern of dopaminergic neurons. However, dLRRK mutant flies were selectively sensitive to hydrogen peroxide induced stress but not to paraquat, rotenone and β-mercaptoethanol induced stresses.

Conclusion

Our results indicate that inactivation of dLRRK kinase activity is not essential for fly development and suggest that inhibition of LRRK activity may serve as a potential treatment of PD. However, dLRRK kinase activity likely plays a role in protecting against oxidative stress.  相似文献   

6.

Background

Mutations in LRRK2 gene represent the most common known genetic cause of Parkinson''s disease (PD).

Methodology/Principal Findings

We used metabolomic profiling to identify biomarkers that are associated with idiopathic and LRRK2 PD. We compared plasma metabolomic profiles of patients with PD due to the G2019S LRRK2 mutation, to asymptomatic family members of these patients either with or without G2019S LRRK2 mutations, and to patients with idiopathic PD, as well as non-related control subjects. We found that metabolomic profiles of both idiopathic PD and LRRK2 PD subjects were clearly separated from controls. LRRK2 PD patients had metabolomic profiles distinguishable from those with idiopathic PD, and the profiles could predict whether the PD was secondary to LRRK2 mutations or idiopathic. Metabolomic profiles of LRRK2 PD patients were well separated from their family members, but there was a slight overlap between family members with and without LRRK2 mutations. Both LRRK2 and idiopathic PD patients showed significantly reduced uric acid levels. We also found a significant decrease in levels of hypoxanthine and in the ratios of major metabolites of the purine pathway in plasma of PD patients.

Conclusions/Significance

These findings show that LRRK2 patients with the G2019S mutation have unique metabolomic profiles that distinguish them from patients with idiopathic PD. Furthermore, asymptomatic LRRK2 carriers can be separated from gene negative family members, which raises the possibility that metabolomic profiles could be useful in predicting which LRRK2 carriers will eventually develop PD. The results also suggest that there are aberrations in the purine pathway in PD which may occur upstream from uric acid.  相似文献   

7.

Background

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD). LRRK2 contains an “enzymatic core” composed of GTPase and kinase domains that is flanked by leucine-rich repeat (LRR) and WD40 protein-protein interaction domains. While kinase activity and GTP-binding have both been implicated in LRRK2 neurotoxicity, the potential role of other LRRK2 domains has not been as extensively explored.

Principal Findings

We demonstrate that LRRK2 normally exists in a dimeric complex, and that removing the WD40 domain prevents complex formation and autophosphorylation. Moreover, loss of the WD40 domain completely blocks the neurotoxicity of multiple LRRK2 PD mutations.

Conclusion

These findings suggest that LRRK2 dimerization and autophosphorylation may be required for the neurotoxicity of LRRK2 PD mutations and highlight a potential role for the WD40 domain in the mechanism of LRRK2-mediated cell death.  相似文献   

8.

Background

Recent studies have linked certain single nucleotide polymorphisms in the leucine-rich repeat kinase 2 (LRRK2) gene with Parkinson’s disease (PD). Among the mutations, LRRK2 c.4883G>C (R1628P) variant was identified to have a significant association with the risk of PD in ethnic Han-Chinese populations. But the molecular pathological mechanisms of R1628P mutation in PD is still unknown.

Principle Findings

Unlike other LRRK2 mutants in the Roc-COR-Kinase domain, the R1628P mutation didn’t alter the LRRK2 kinase activity and promote neuronal death directly. LRRK2 R1628P mutation increased the binding affinity of LRRK2 with Cyclin-dependent kinase 5 (Cdk5). Interestingly, R1628P mutation turned its adjacent amino acid residue S1627 on LRRK2 protein to a novel phosphorylation site of Cdk5, which could be defined as a typical type II (+) phosphorylation-related single nucleotide polymorphism. Importantly, we showed that the phosphorylation of S1627 by Cdk5 could activate the LRRK2 kinase, and neurons ectopically expressing R1628P displayed a higher sensitivity to 1-methyl-4-phenylpyridinium, a bioactive metabolite of environmental toxin MPTP, in a Cdk5-dependent manner.

Conclusion

Our data indicate that Parkinson-related LRRK2 mutation R1628P leads to Cdk5 phosphorylation of LRRK2 at S1627, which would upregulate the kinase activity of LRRK2 and consequently cause neuronal death.  相似文献   

9.

Background

Non-motor symptoms are increasingly recognized as important features of Parkinson’s disease (PD). LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.

Objective

Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.

Methodology

We investigated the onset of motor and non-motor phenotypes on the LRRK2R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction), and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.

Conclusions

LRRK2R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.  相似文献   

10.
11.

Background

Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). However, recent in vitro studies have indicated that GTPases may also be directly regulated by redox agents. We hypothesized that this redox-based mechanism occurs in cells and affects cytoskeletal dynamics, and in this report we conclude this is indeed a novel mechanism of regulating the GTPase RhoA.

Methodology/Principal Findings

In this report, we show that RhoA can be directly activated by reactive oxygen species (ROS) in cells, and that this requires two critical cysteine residues located in a unique redox-sensitive motif within the phosphoryl binding loop. First, we show that ROS can reversibly activate RhoA and induce stress fiber formation, a well characterized readout of RhoA activity. To determine the role of cysteine residues in this mechanism of regulation, we generated cysteine to alanine RhoA mutants. Mutation of these cysteines abolishes ROS-mediated activation and stress fiber formation, indicating that these residues are critical for redox-regulation of RhoA. Importantly, these mutants maintain the ability to be activated by GEFs.

Conclusions/Significance

Our findings identify a novel mechanism for the regulation of RhoA in cells by ROS, which is independent of classical regulatory proteins. This mechanism of regulation may be particularly relevant in pathological conditions where ROS are generated and the cellular redox-balance altered, such as in asthma and ischemia-reperfusion injury.  相似文献   

12.

Background

Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson''s disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined.

Methodology/Principal Findings

Using DJ-1 loss of function cellular models from knockout (KO) mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2.

Conclusions/Significance

We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson''s disease.  相似文献   

13.

Background

TC10 is a small GTPase found in lipid raft microdomains of adipocytes. The protein undergoes activation in response to insulin, and plays a key role in the regulation of glucose uptake by the hormone.

Methodology/Principal Findings

TC10 requires high concentrations of magnesium in order to stabilize guanine nucleotide binding. Kinetic analysis of this process revealed that magnesium acutely decreased the nucleotide release and exchange rates of TC10, suggesting that the G protein may behave as a rapidly exchanging, and therefore active protein in vivo. However, in adipocytes, the activity of TC10 is not constitutive, indicating that mechanisms must exist to maintain the G protein in a low activity state in untreated cells. Thus, we searched for proteins that might bind to and stabilize TC10 in the inactive state. We found that Caveolin interacts with TC10 only when GDP-bound and stabilizes GDP binding. Moreover, knockdown of Caveolin 1 in 3T3-L1 adipocytes increased the basal activity state of TC10.

Conclusions/Significance

Together these data suggest that TC10 is intrinsically active in vivo, but is maintained in the inactive state by binding to Caveolin 1 in 3T3-L1 adipocytes under basal conditions, permitting its activation by insulin.  相似文献   

14.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson''s disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2 induces neuronal toxicity through a kinase-dependent mechanism suggesting that kinase activity is important for mediating the pathogenic effects of LRRK2 mutations. A number of LRRK2 kinase substrates have been identified in vitro but whether they represent authentic physiological substrates in mammalian cells or tissues is not yet clear. The eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, was recently identified as a potential substrate of LRRK2 kinase activity in vitro and in Drosophila with phosphorylation occurring at Thr37 and Thr46. Here, we explore a potential interaction of LRRK2 and 4E-BP1 in mammalian cells and brain. We find that LRRK2 can weakly phosphorylate 4E-BP1 in vitro but LRRK2 overexpression is not able to alter endogenous 4E-BP1 phosphorylation in mammalian cells. In mammalian neurons LRRK2 and 4E-BP1 display minimal co-localization, whereas the subcellular distribution, protein complex formation and covalent post-translational modification of endogenous 4E-BP1 are not altered in the brains of LRRK2 knockout or mutant LRRK2 transgenic mice. In the brain, the phosphorylation of 4E-BP1 at Thr37 and Thr46 does not change in LRRK2 knockout or mutant LRRK2 transgenic mice, nor is 4E-BP1 phosphorylation altered in idiopathic or G2019S mutant PD brains. Collectively, our results suggest that 4E-BP1 is neither a major nor robust physiological substrate of LRRK2 in mammalian cells or brain.  相似文献   

15.

Background

Cell polarization is essential for processes such as cell migration and asymmetric cell division. A common regulator of cell polarization in most eukaryotic cells is the conserved Rho GTPase, Cdc42. In budding yeast, Cdc42 is activated by a single guanine nucleotide exchange factor, Cdc24. The mechanistic details of Cdc24 activation at the onset of yeast cell polarization are unclear. Previous studies have suggested an important role for phosphorylation of Cdc24, which may regulate activity or function of the protein, representing a key step in the symmetry breaking process.

Methodology/Principal Findings

Here, we directly ask whether multisite phosphorylation of Cdc24 plays a role in its regulation. We identify through mass spectrometry analysis over thirty putative in vivo phosphorylation sites. We first focus on sites matching consensus sequences for cyclin-dependent and p21-activated kinases, two kinase families that have been previously shown to phosphorylate Cdc24. Through site-directed mutagenesis, yeast genetics, and light and fluorescence microscopy, we show that nonphosphorylatable mutations of these consensus sites do not lead to any detectable consequences on growth rate, morphology, kinetics of polarization, or localization of the mutant protein. We do, however, observe a change in the mobility shift of mutant Cdc24 proteins on SDS-PAGE, suggesting that we have indeed perturbed its phosphorylation. Finally, we show that mutation of all identified phosphorylation sites does not cause observable defects in growth rate or morphology.

Conclusions/Significance

We conclude that lack of phosphorylation on Cdc24 has no overt functional consequences in budding yeast. Yeast cell polarization may be more tightly regulated by inactivation of Cdc42 by GTPase activating proteins or by alternative methods of Cdc24 regulation, such as conformational changes or oligomerization.  相似文献   

16.

Background

A major player in the process of metastasis is the actin cytoskeleton as it forms key structures in both invasion mechanisms, mesenchymal and amoeboid migration. We tested the actin binding compound Chondramide as potential anti-metastatic agent.

Methods

In vivo, the effect of Chondramide on metastasis was tested employing a 4T1-Luc BALB/c mouse model. In vitro, Chondramide was tested using the highly invasive cancer cell line MDA-MB-231 in Boyden-chamber assays, fluorescent stainings, Western blot and Pull down assays. Finally, the contractility of MDA-MB-231 cells was monitored in 3D environment and analyzed via PIV analysis.

Results

In vivo, Chondramide treatment inhibits metastasis to the lung and the migration and invasion of MDA-MB-231 cells is reduced by Chondramide in vitro. On the signaling level, RhoA activity is decreased by Chondramide accompanied by reduced MLC-2 and the stretch induced guanine nucleotide exchange factor Vav2 activation. At same conditions, EGF-receptor autophosphorylation, Akt and Erk as well as Rac1 are not affected. Finally, Chondramide treatment disrupted the actin cytoskeleton and decreased the ability of cells for contraction.

Conclusions

Chondramide inhibits cellular contractility and thus represents a potential inhibitor of tumor cell invasion.  相似文献   

17.

Background

Dyskinesias are some of the major motor complications that impair quality of life for patients with Parkinson''s disease. The purpose of the present study was to investigate the efficacy of amantadine in Parkinson''s disease patients suffering from dyskinesias.

Methods

In this multi-center, double-blind, randomized, placebo-controlled, cross-over trial, 36 patients with Parkinson''s disease and dyskinesias were randomized, and 62 interventions, which included amantadine (300 mg /day) or placebo treatment for 27 days, were analyzed. At 15 days after washout, the treatments were crossed over. The primary outcome measure was the changes in the Rush Dyskinesia Rating Scale (RDRS) during each treatment period. The secondary outcome measures were changes in the Unified Parkinson''s Disease Rating Scale part IVa (UPDRS-IVa, dyskinesias), part IVb (motor fluctuations), and part III (motor function).

Results

RDRS improved in 64% and 16% of patients treated with amantadine or placebo, respectively, with significant differences between treatments. The adjusted odds-ratio for improvement by amantadine was 6.7 (95% confidence interval, 1.4 to 31.5). UPDRS-IVa was improved to a significantly greater degree in amantadine-treated patients [mean (SD) of 1.83 (1.56)] compared with placebo-treated patients [0.03 (1.51)]. However, there were no significant effects on UPDRS-IVb or III scores.

Conclusions

Results from the present study demonstrated that amantadine exhibited efficacious effects against dyskinesias in 60–70% of patients.

Trial Registration

UMIN Clinical Trial Registry UMIN000000780  相似文献   

18.

Background

A combination of levodopa (L-DOPA) and carbidopa is the most commonly-used treatment for symptom management in Parkinson''s disease. Studies have shown that concomitant use of a COMT inhibitor is highly beneficial in controlling the wearing-off phenomenon by improving L-DOPA bioavailability as well as brain entry. The present study sought to determine whether (-)-epigallocatechin-3-gallate (EGCG), a common tea polyphenol, can serve as a naturally-occurring COMT inhibitor that also possesses neuroprotective actions.

Methodology/Principal Findings

Using both in vitro and in vivo models, we investigated the modulating effects of EGCG on L-DOPA methylation as well as on chemically induced oxidative neuronal damage and degeneration. EGCG strongly inhibited human liver COMT-mediated O-methylation of L-DOPA in a concentration-dependent manner in vitro, with an average IC 50 of 0.36 µM. Oral administration of EGCG moderately lowered the accumulation of 3-O-methyldopa in the plasma and striatum of rats treated with L-DOPA + carbidopa. In addition, EGCG also reduced glutamate-induced oxidative cytotoxicity in cultured HT22 mouse hippocampal neuronal cells through inactivation of the nuclear factor κB-signaling pathway. Under in vivo conditions, administration of EGCG exerted a strong protective effect against kainic acid-induced oxidative neuronal death in the hippocampus of rats.

Conclusions/Significance

These observations suggest that oral administration of EGCG may have significant beneficial effects in Parkinson''s patients treated with L-DOPA and carbidopa by exerting a modest inhibition of L-DOPA methylation plus a strong neuroprotection against oxidative damage and degeneration.  相似文献   

19.

Background

Idiopathic Parkinson’s disease (IPD) and LRRK2-associated PD (LRRK2-PD) might be expected to differ clinically since the neuropathological substrate of LRRK2-PD is heterogeneous. The range and severity of extra-nigral nonmotor features associated with LRRK2 mutations is also not well-defined.

Objective

To evaluate the prevalence and time of onset of nonmotor symptoms (NMS) in LRRK2-PD patients.

Methods

The presence of hyposmia and of neuropsychiatric, dysautonomic and sleep disturbances was assessed in 33 LRRK2-G2019S-PD patients by standardized questionnaires and validated scales. Thirty-three IPD patients, matched for age, gender, duration of parkinsonism and disease severity and 33 healthy subjects were also evaluated.

Results

University of Pennsylvania Smell Identification Test (UPSIT) scores in LRRK2-G2019S-PD were higher than those in IPD (23.5±6.8 vs 18.4±6.0; p = 0.002), and hyposmia was less frequent in G2019S carriers than in IPD (39.4% vs 75.8%; p = 0.01). UPSIT scores were significantly higher in females than in males in LRRK2-PD patients (26.9±4.7 vs 19.4±6.8; p<0.01). The frequency of sleep and neuropsychiatric disturbances and of dysautonomic symptoms in LRRK2-G2019S-PD was not significantly different from that in IPD. Hyposmia, depression, constipation and excessive daytime sleepiness, were reported to occur before the onset of classical motor symptoms in more than 40% of LRRK2-PD patients in whom these symptoms were present at the time of examination.

Conclusion

Neuropsychiatric, dysautonomic and sleep disturbances occur as frequently in patients with LRRK2-G2019S-PD as in IPD but smell loss was less frequent in LRRK2-PD. Like in IPD, disturbances such as hyposmia, depression, constipation and excessive daytime sleepiness may antedate the onset of classical motor symptoms in LRRK2-G2019S-PD.  相似文献   

20.

Background

We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF.

Methods and Results

Tachypacing (4 Hz) of HL-1 atrial myocytes significantly and progressively reduced the amplitude of Ca2+ transients (CaT). In addition to HSPB1, also overexpression of HSPB6, HSPB7 and HSPB8 protected against tachypacing-induced CaT reduction. The protective effect was independent of HSPB1. Moreover, tachypacing induced RhoA GTPase activity and caused F-actin stress fiber formation. The ROCK inhibitor Y27632 significantly prevented tachypacing-induced F-actin formation and CaT reductions, showing that RhoA activation is required for remodeling. Although all protective HSPB members prevented the formation of F-actin stress fibers, their mode of action differs. Whilst HSPB1, HSPB6 and HSPB7 acted via direct prevention of F-actin formation, HSPB8-protection was mediated via inhibition of RhoA GTPase activity.

Conclusion

Overexpression of HSPB1, as well as HSPB6, HSPB7 and HSPB8 independently protect against tachycardia remodeling by attenuation of the RhoA GTPase pathway at different levels. The cardioprotective role for multiple HSPB members indicate a possible therapeutic benefit of compounds able to boost the expression of single or multiple members of the HSPB family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号