首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The axon initial segment (AIS) is essential for initiating action potentials and maintaining neuronal excitability in axon-bearing neurons in the CNS. There is increasing interest in the targeting of optogenetic tools to subcellular compartments, including the AIS, to gain precise control of neuronal activity for basic research and clinical applications. In particular, targeted expression of optogenetic tools in retinal ganglion cells (RGCs) has been explored as an approach for restoring vision after photoreceptor degeneration. Thus, understanding the effects of such targeting on spiking abilities and/or patterns is important. Here, we examined the effects of recombinant adeno-associated virus (rAAV)-mediated targeted expression of channelrhodopsin-2 (ChR2)-GFP with a NaV channel motif in mouse RGCs. We found that this targeted expression disrupted NaV channel clustering at the AIS and converted the spike firing patterns of RGCs from sustained to transient. Our results suggest that the clustering of membrane channels, including NaV channels, at the AIS is important for the ability of RGCs to generate sustained spike firing. Additionally, the targeting of optogenetic tools to the AIS with the NaV channel motif may offer a way to create transient light responses in RGCs for vision restoration.  相似文献   

2.
Bender KJ  Ford CP  Trussell LO 《Neuron》2010,68(3):500-511
Action potentials initiate in the axon initial segment (AIS), a specialized compartment enriched with Na(+) and K(+) channels. Recently, we found that T- and R-type Ca(2+) channels are concentrated in the AIS, where they contribute to local subthreshold membrane depolarization and thereby influence action potential initiation. While periods of high-frequency activity can alter availability of AIS voltage-gated channels, mechanisms for long-term modulation of AIS channel function remain unknown. Here, we examined the regulatory pathways that control AIS Ca(2+) channel activity in brainstem interneurons. T-type Ca(2+) channels were downregulated by dopamine receptor activation acting via protein kinase C, which in turn reduced neuronal output. These effects occurred without altering AIS Na(+) or somatodendritic T-type channel activity and could be mediated by endogenous dopamine sources present in the auditory brainstem. This pathway represents a new mechanism to inhibit neurons by specifically regulating Ca(2+) channels directly involved in action potential initiation.  相似文献   

3.
During axonal maturation, voltage-gated sodium (Nav) channels accumulate at the axon initial segment (AIS) at high concentrations. This localization is necessary for the efficient initiation of action potentials. The mechanisms underlying channel trafficking to the AIS during axonal development have remained elusive due to a lack of Nav reagents suitable for high resolution imaging of channels located specifically on the cell surface. Using an optical pulse-chase approach in combination with a novel Nav1.6 construct containing an extracellular biotinylation domain we demonstrate that Nav1.6 channels are preferentially inserted into the AIS membrane during neuronal development via direct vesicular trafficking. Single-molecule tracking illustrates that axonal channels are immediately immobilized following delivery, while channels delivered to the soma are often mobile. Neither a Nav1.6 channel lacking the ankyrin-binding motif nor a chimeric Kv2.1 channel containing the Nav ankyrinG-binding domain show preferential AIS insertion. Together these data support a model where ankyrinG-binding is required for preferential Nav1.6 insertion into the AIS plasma membrane. In contrast, ankyrinG-binding alone does not confer the preferential delivery of proteins to the AIS.  相似文献   

4.
In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the high concentration of Nav channels. Understanding how neurons regulate the expression and discrete localization of Nav channels is critical to understanding the diversity of normal neuronal function as well as neuronal dysfunction caused by defects in these processes. Here, we review the mechanisms establishing the clustering of Nav channels at the AIS and in the node and discuss how the alterations of Nav channel clustering can lead to certain pathophysiologies.  相似文献   

5.
In mammalian neurons, the precise accumulation of sodium channels at the axonal initial segment (AIS) ensures action potential initiation. This accumulation precedes the immobilization of membrane proteins and lipids by a diffusion barrier at the AIS. Using single-particle tracking, we measured the mobility of a chimeric ion channel bearing the ankyrin-binding motif of the Nav1.2 sodium channel. We found that ankyrin G (ankG) limits membrane diffusion of ion channels when coexpressed in neuroblastoma cells. Site-directed mutants with decreased affinity for ankG exhibit increased diffusion speeds. In immature hippocampal neurons, we demonstrated that ion channel immobilization by ankG is regulated by protein kinase CK2 and occurs as soon as ankG accumulates at the AIS of elongating axons. Once the diffusion barrier is formed, ankG is still required to stabilize ion channels. In conclusion, our findings indicate that specific binding to ankG constitutes the initial step for Nav channel immobilization at the AIS membrane and precedes the establishment of the diffusion barrier.  相似文献   

6.
Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation.  相似文献   

7.
The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex.  相似文献   

8.
Channelrhodopsin-2 (ChR2) is a light-gated ion channel that is successfully used in neurosciences to depolarize cells with blue light. In this regard control of membrane voltage with light opens new perspectives for the characterization of ion channels and the search for inhibitors or modulators. Here, we report a control of membrane potential with ChR2 and the potassium channel mTrek for the purpose of screening for ion channel specific drugs. To verify principle we have chosen the voltage gated calcium channel CaV3.2 as potential drug target. For this purpose we transfected the ChR2 gene into a HEK293T-cell line that permanently expresses CaV3.2 and the K-channel mTrek. The resting potential was adjusted with low concentration of extracellular potassium ions whereas transient depolarization was achieved by activation of ChR2 with short pulses of blue light. Calcium ion influx through CaV3.2 was monitored by observing fura-2 fluorescence. This approach allowed a repetitive activation of CaV3.2. The Ca2+ influx was specifically blocked by the inhibitor mibefradil. Since this assay is genetically-encoded, it may be employed for a variety of voltage-gated calcium channels and should be applicable to multi-well reader formats for high-throughput screening.  相似文献   

9.
The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon–dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar–globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling.  相似文献   

10.
One of the major physiological roles of the neuronal voltage-gated sodium channel is to generate action potentials at the axon hillock/initial segment and to ensure propagation along myelinated or unmyelinated fibers to nerve terminal. These processes require a precise distribution of sodium channels accumulated at high density in discrete subdomains of the nerve membrane. In neurons, information relevant to ion channel trafficking and compartmentalization into sub-domains of the plasma membrane is far from being elucidated. Besides, whereas information on dendritic targeting is beginning to emerge, less is known about the mechanisms leading to the polarized distribution of proteins in axon. To obtain a better understanding of how neurons selectively target sodium channels to discrete subdomains of the nerve, we addressed the question as to whether any of the large intracellular regions of Nav1.2 contain axonal sorting and/or clustering signals. We first obtained evidence showing that addition of the cytoplasmic carboxy-terminal region of Nav1.2 restricted the distribution of a dendritic-axonal reporter protein to axons of hippocampal neurons. The analysis of mutants revealed that a di-leucine-based motif mediates chimera compartmentalization in axons and its elimination in soma and dendrites by endocytosis. The analysis of the others generated chimeras showed that the determinant conferring sodium channel clustering at the axonal initial segment is contained within the cytoplasmic loop connecting domains II-III of Nav1.2. Expression of a soluble Nav1.2 II-III linker protein led to the disorganization of endogenous sodium channels. The motif was sufficient to redirect a somatodendritic potassium channel to the axonal initial segment, a process involving association with ankyrin G. Thus, it is conceivable that concerted action of the two determinants is required for sodium channel compartmentalization in axons.  相似文献   

11.
Many protocols have been designed to differentiate human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs) into neurons. Despite the relevance of electrophysiological properties for proper neuronal function, little is known about the evolution over time of important neuronal electrophysiological parameters in iPSC-derived neurons. Yet, understanding the development of basic electrophysiological characteristics of iPSC-derived neurons is critical for evaluating their usefulness in basic and translational research. Therefore, we analyzed the basic electrophysiological parameters of forebrain neurons differentiated from human iPSCs, from day 31 to day 55 after the initiation of neuronal differentiation. We assayed the developmental progression of various properties, including resting membrane potential, action potential, sodium and potassium channel currents, somatic calcium transients and synaptic activity. During the maturation of iPSC-derived neurons, the resting membrane potential became more negative, the expression of voltage-gated sodium channels increased, the membrane became capable of generating action potentials following adequate depolarization and, at day 48–55, 50% of the cells were capable of firing action potentials in response to a prolonged depolarizing current step, of which 30% produced multiple action potentials. The percentage of cells exhibiting miniature excitatory post-synaptic currents increased over time with a significant increase in their frequency and amplitude. These changes were associated with an increase of Ca2+ transient frequency. Co-culturing iPSC-derived neurons with mouse glial cells enhanced the development of electrophysiological parameters as compared to pure iPSC-derived neuronal cultures. This study demonstrates the importance of properly evaluating the electrophysiological status of the newly generated neurons when using stem cell technology, as electrophysiological properties of iPSC-derived neurons mature over time.  相似文献   

12.
L-type voltage gated calcium channels (VGCCs) interact with a variety of proteins that modulate both their function and localization. A-Kinase Anchoring Proteins (AKAPs) facilitate L-type calcium channel phosphorylation through β adrenergic stimulation. Our previous work indicated a role of neuronal AKAP79/150 in the membrane targeting of Ca(V)1.2 L-type calcium channels, which involved a proline rich domain (PRD) in the intracellular II-III loop of the channel.(1) Here, we show that mutation of proline 857 to alanine (P857A) into the PRD does not disrupt the AKAP79-induced increase in Ca(v)1.2 membrane expression. Furthermore, deletion of two other PRDs into the carboxy terminal domain of Ca(V)1.2 did not alter the targeting role of AKAP79. In contrast, the distal carboxy terminus region of the channel directly interacts with AKAP79. This protein-protein interaction competes with a direct association of the channel II-III linker on the carboxy terminal tail and modulates membrane targeting of Ca(V)1.2. Thus, our results suggest that the effects of AKAP79 occur through relief of an autoinhibitory mechanism mediated by intramolecular interactions of Ca(v)1.2 intracellular regions.  相似文献   

13.
Neurons are highly polarized cells with distinct domains responsible for receiving, transmitting, and propagating electrical signals. Central to these functions is the axon initial segment (AIS), a short region of the axon adjacent to the cell body that is enriched in voltage-gated ion channels, cell adhesion molecules, and cytoskeletal scaffolding proteins. Traditionally, the function of the AIS has been limited to its role in action potential initiation and modulation. However, recent experiments indicate that it also plays essential roles in neuronal polarity. Here, we review how initial segments are assembled, and discuss proposed mechanisms for how the AIS contributes to maintenance of neuronal polarity.  相似文献   

14.
Electrical and pharmacological stimulation methods are commonly used to study neuronal brain circuits in vivo, but are problematic, because electrical stimulation has limited specificity, while pharmacological activation has low temporal resolution. A recently developed alternative to these methods is the use of optogenetic techniques, based on the expression of light sensitive channel proteins in neurons. While optogenetics have been applied in in vitro preparations and in in vivo studies in rodents, their use to study brain function in nonhuman primates has been limited to the cerebral cortex. Here, we characterize the effects of channelrhodopsin-2 (ChR2) transfection in subcortical areas, i.e., the putamen, the external globus pallidus (GPe) and the ventrolateral thalamus (VL) of rhesus monkeys. Lentiviral vectors containing the ChR2 sequence under control of the elongation factor 1α promoter (pLenti-EF1α -hChR2(H134R)-eYFP-WPRE, titer 109 particles/ml) were deposited in GPe, putamen and VL. Four weeks later, a probe combining a conventional electrode and an optic fiber was introduced in the previously injected brain areas. We found light-evoked responses in 31.5% and 32.7% of all recorded neurons in the striatum and thalamus, respectively, but only in 2.5% of recorded GPe neurons. As expected, most responses were time-locked increases in firing, but decreases or mixed responses were also seen, presumably via ChR2-mediated activation of local inhibitory connections. Light and electron microscopic analyses revealed robust expression of ChR2 on the plasma membrane of cell somas, dendrites, spines and terminals in the striatum and VL. This study demonstrates that optogenetic experiments targeting the striatum and basal ganglia-related thalamic nuclei can be successfully achieved in monkeys. Our results indicate important differences of the type and magnitude of responses in each structure. Experimental conditions such as the vector used, the number and rate of injections, or the light stimulation conditions have to be optimized for each structure studied.  相似文献   

15.
Kv1 channels are concentrated at specific sites in the axonal membrane, where they regulate neuronal excitability. Establishing these distributions requires regulated dissociation of Kv1 channels from the neuronal trafficking machinery and their subsequent insertion into the axonal membrane. We find that the auxiliary Kvβ2 subunit of Kv1 channels purified from brain is phosphorylated on serine residues 9 and 31, and that cyclin-dependent kinase (Cdk)-mediated phosphorylation at these sites negatively regulates the interaction of Kvβ2 with the microtubule plus end-tracking protein EB1. Endogenous Cdks, EB1, and Kvβ2 phosphorylated at serine 31 are colocalized in the axons of cultured hippocampal neurons, with enrichment at the axon initial segment (AIS). Acute inhibition of Cdk activity leads to intracellular accumulation of EB1, Kvβ2, and Kv1 channel subunits within the AIS. These studies reveal a new regulatory mechanism for the targeting of Kv1 complexes to the axonal membrane through the reversible Cdk phosphorylation-dependent binding of Kvβ2 to EB1.  相似文献   

16.
Channelrhodopsin-1 and 2 (ChR1 and ChR2) form cation channels that are gated by light through an unknown mechanism. We tested the DC-gate hypothesis that C167 and D195 are involved in the stabilization of the cation-permeable state of ChRWR/C1C2 which consists of TM1-5 of ChR1 and TM6-7 of ChR2 and ChRFR which consists of TM1-2 of ChR1 and TM3-7 of ChR2. The cation permeable state of each ChRWR and ChRFR was markedly prolonged in the order of several tens of seconds when either C167 or D195 position was mutated to alanine (A). Therefore, the DC-gate function was conserved among these chimeric ChRs. We next investigated the kinetic properties of the ON/OFF response of these bi-stable ChR mutants as they are important in designing the photostimulation protocols for the optogenetic manipulation of neuronal activities. The turning-on rate constant of each photocurrent followed a linear relationship to 0–0.12 mWmm−2 of blue LED light or to 0–0.33 mWmm−2 of cyan LED light. Each photocurrent of bi-stable ChR was shut off to the non-conducting state by yellow or orange LED light in a manner dependent on the irradiance. As the magnitude of the photocurrent was mostly determined by the turning-on rate constant and the irradiation time, the minimal irradiance that effectively evoked an action potential (threshold irradiance) was decreased with time only if the neuron, which expresses bi-stable ChRs, has a certain large membrane time constant (eg. τm > 20 ms). On the other hand, in another group of neurons, the threshold irradiance was not dependent on the irradiation time. Based on these quantitative data, we would propose that these bi-stable ChRs would be most suitable for enhancing the intrinsic activity of excitatory pyramidal neurons at a minimal magnitude of irradiance.  相似文献   

17.
Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K channel by introducing positive charges on the channel surface, which potentiated the PUFA effect. Furthermore, we found that PUFA mainly affects the final voltage sensor movement, which is closely linked to channel opening, and that specific charges at the extracellular end of the voltage sensor are critical for the PUFA effect. Because different voltage-gated K channels have different charge profiles, this implies channel-specific PUFA effects. The identified site and the pharmacological mechanism will potentially be very useful in future drug design of small-molecule compounds specifically targeting neuronal and cardiac excitability.  相似文献   

18.
19.
Optogenetics is a powerful neuromodulatory tool with many unique advantages to explore functions of neuronal circuits in physiology and diseases. Yet, interpretation of cellular and behavioral responses following in vivo optogenetic manipulation of brain activities in experimental animals often necessitates identification of photoactivated neurons with high spatial resolution. Although tracing expression of immediate early genes (IEGs) provides a convenient approach, neuronal activation is not always followed by specific induction of widely used neuronal activity markers like c-fos, Egr1 and Arc. In this study we performed unilateral optogenetic stimulation of the striatum in freely moving transgenic mice that expressed a channelrhodopsin-2 (ChR2) variant ChR2(C128S) in striatal medium spiny neurons (MSNs). We found that in vivo blue light stimulation significantly altered electrophysiological activity of striatal neurons and animal behaviors. To identify photoactivated neurons we then analyzed IEG expression patterns using in situ hybridization. Upon light illumination an induction of c-fos was not apparent whereas another neuronal IEG Npas4 was robustly induced in MSNs ipsilaterally. Our results demonstrate that tracing Npas4 mRNA expression following in vivo optogenetic modulation can be an effective tool for reliable and sensitive identification of activated MSNs in the mouse striatum.  相似文献   

20.
Neural circuits are exquisitely organized, consisting of many different neuronal subpopulations. However, it is difficult to assess the functional roles of these subpopulations using conventional extracellular recording techniques because these techniques do not easily distinguish spikes from different neuronal populations. To overcome this limitation, we have developed PINP (Photostimulation-assisted Identification of Neuronal Populations), a method of tagging neuronal populations for identification during in vivo electrophysiological recording. The method is based on expressing the light-activated channel channelrhodopsin-2 (ChR2) to restricted neuronal subpopulations. ChR2-tagged neurons can be detected electrophysiologically in vivo since illumination of these neurons with a brief flash of blue light triggers a short latency reliable action potential. We demonstrate the feasibility of this technique by expressing ChR2 in distinct populations of cortical neurons using two different strategies. First, we labeled a subpopulation of cortical neurons—mainly fast-spiking interneurons—by using adeno-associated virus (AAV) to deliver ChR2 in a transgenic mouse line in which the expression of Cre recombinase was driven by the parvalbumin promoter. Second, we labeled subpopulations of excitatory neurons in the rat auditory cortex with ChR2 based on projection target by using herpes simplex virus 1 (HSV1), which is efficiently taken up by axons and transported retrogradely; we find that this latter population responds to acoustic stimulation differently from unlabeled neurons. Tagging neurons is a novel application of ChR2, used in this case to monitor activity instead of manipulating it. PINP can be readily extended to other populations of genetically identifiable neurons, and will provide a useful method for probing the functional role of different neuronal populations in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号