首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a novel method for the preparation of 'recombinant proteoliposomes'. Membrane proteins were expressed on budded virus (BV) envelopes using baculovirus gene expression systems, and proteoliposomes were prepared by fusion of these viruses with liposomes. First, plasmid DNA containing the gene for the thyroid-stimulating hormone receptor (TSHR) or the acetylcholine receptor alpha-subunit (AChRalpha) was co-transfected with wild type virus [Autographa californica nuclear polyhedrosis virus (AcNPV)] genomes into insect cells [Spodoptera frugiperda (Sf9)] to obtain recombinant viruses via homologous recombination. The recombinant viruses were again infected into Sf9 cells, and the resulting BVs were shown to express TSHR and AChRalpha. Next, the fusion behaviour of AcNPV-derived BVs and liposomes was examined via a fluorescence assay, and BVs were shown to fuse with phosphatidylserine-containing liposomes below pH 5.0, the pH at which fusion glycoprotein gp64 on the virus envelope becomes active. TSHR- or AChRalpha-expressed BVs were also shown to fuse with liposomes. Finally, TSHR- and AChRalpha-recombinant proteoliposomes were immobilized on enzyme-linked immunosorbent assay plates, and their reactivities were examined via a general immunoassay, which showed that the recombinant proteoliposomes were fully active. These results successfully demonstrate the development of a method based on a baculovirus gene expression system for the preparation of recombinant and functional proteoliposomes.  相似文献   

2.
Eucaryotic expression vectors containing the Escherichia coli pyrB gene (pyrB encodes the catalytic subunit of aspartate transcarbamylase [ATCase]) and the Tn5 phosphotransferase gene (G418 resistance module) were transfected into a mutant Chinese hamster ovary cell line possessing a CAD multifunctional protein lacking ATCase activity. G418-resistant transformants were isolated and analyzed for ATCase activity, the ability to complement the CAD ATCase defect, and the ability to resist high concentrations of the ATCase inhibitor N-(phosphonacetyl)-L-aspartate (PALA) by amplifying the donated pyrB gene sequences. We report that bacterial ATCase is expressed in these lines, that it complements the CAD ATCase defect in trans, and that its amplification engenders PALA resistance. In addition, we derived rapid and sensitive assay conditions which enable the determination of bacterial ATCase enzyme activity in the presence of mammalian ATCase.  相似文献   

3.
4.
Thrombomodulin is an endothelial cell membrane protein which plays a central regulatory role in the protein C anticoagulant pathway. The human thrombomodulin intronless gene was isolated from a genomic DNA library and used to isolate the coding region. A mammalian expression vector, phd-TMD1, encoding all the extracellular domains of human thrombomodulin but lacking the transmembrane and cytoplasmic domains was constructed. Stable phd-TMD 1 transformants, in both hamster AV12-644 and human 293 cells, expressed functionally active recombinant thrombomodulin as a secreted, soluble product. Soluble thrombomodulin was secreted as two major proteins of 105 kDa and 75 kDa, both of which were purified to homogeneity. The kinetic properties for protein C activation of the two proteins were very different: the Kd for thrombin, Km for protein C, and Ca2+ optima were 3.0 nM, 1.5 microM, and 1-3 mM for the 105-kDa protein and 16 nM, 2.3 microM, and 0.2-0.5 mM for the 75-kDa protein. In clotting and platelet activation assays, the 105-kDa protein was a much more potent anticoagulant than the 75-kDa protein. Both forms of the protein had the amino-terminal sequence Ala19-Pro-Ala-Glu-Pro-Gln. Amino acid composition analysis indicated that both forms of the protein had the same amino acid content which was consistent with the predicted protein comprising residues Ala19 to Ser515. The difference in size appeared to be due to glycosylation as both forms were of similar size following chemical deglycosylation. These studies suggest that (1) secretable thrombomodulin derivatives can be used to study structure-function relationships of the extracellular domains of this important regulatory protein, (2) the extent of glycosylation has profound effects on the kinetic and anticoagulant properties of human thrombomodulin, and (3) soluble recombinant human thrombomodulins may be developed as clinically significant therapeutic anticoagulants.  相似文献   

5.
6.
Recombinant baculoviruses have emerged as a new gene delivery vehicle for mammalian cells. Thus, a shuttle promoter that mediates gene expression in both insect and mammalian cells will facilitate the development of a baculovirus vector-based mammalian cell gene delivery vehicle. This study described the generation of three recombinant baculoviruses with an EGFP reporter gene under the control of the white spot syndrome virus (WSSV) ie1 promoter, or either of two control promoters, the baculovirus early-to-late (ETL) promoter and polyhedrin promoter. The resulting recombinant baculoviruses were used to infect insect Sf9 cells and transduce several mammalian cell lines to test the expression of EGFP. We found that the WSSV ie1 promoter displayed a strong promoter activity in both insect and mammalian cells, and showed a stronger promoter activity than the ETL promoter in some mammalian cell lines. The activity of the WSSV ie1 promoter, but not the ETL promoter, can be enhanced by sodium butyrate, a histone deacetylase inhibitor. A transient plasmid transfection assay indicated that the WSSV ie1 promoter activity in mammalian cells is independent of baculovirus gene expression, differing from the ETL promoter, which was shown to be baculovirus-dependent. This study demonstrates, for the first time, that the WSSV ie1 promoter can function as a baculovirus-independent shuttle promoter between insect cells and mammalian cells. This novel shuttle promoter will facilitate the application of baculovirus-based vectors in gene expression, gene therapy, and non-replicative vector vaccines.  相似文献   

7.
Recombinant human cysteine protease inhibitor, stefin A, was expressed in both Escherichia coli and BS-C-1 monkey kidney cells utilizing pET and recombinant vaccinia virus systems, respectively. The expressed protein was purified and analyzed by SDS-PAGE and Western blot analysis utilizing a polyclonal antibody against rat cystatin alpha. In both cases the purified protein appeared as a single band corresponding to the molecular weight of stefin A ( approximately 10kDa). Viability of the expressed stefin A was determined by the inhibition of the plant cysteine protease, papain. Recombinant human stefin A expressed in both E. coli and BS-C-1 cells, was shown to almost completely inhibit papain. The expression of a fully functional recombinant human stefin A in the bacterial system provides a highly efficient tool for the production of large quantities of the protein. This can be an important tool in kinetic studies as well as in production of antibodies for other analytical studies (immunoblot, immunohistochemical studies, etc.). Expression in the mammalian cells, on the other hand, can provide a significant research tool to study the functional roles of stefin A in mammalian systems such as regulation of cysteine proteases.  相似文献   

8.
Deoxycoformycin (dCF)-resistant mutants of rat hepatoma, mouse LMTK-, and Chinese hamster ovary (CHO) cells have been isolated and shown to overproduce adenosine deaminase (ADA). The overproduction of ADA was found to be due to ADA-gene amplification in rat and mouse cells but not in CHO cells. Deoxycoformycin-resistant rat hepatoma cells have large HSRs (homogeneously staining regions), mouse cells carry DMs (Double minutes), and CHO cells do not appear to have any gross chromosomal anomalies. When dCF-resistant rat hepatoma and mouse cells are selected by increasing the concentration of the inhibitor in small increments, there is a good correlation between the increase in ADA gene copy number and the increase in the level of expression of ADA, suggesting that all of the amplified genes are equally active in the expression of ADA.  相似文献   

9.
10.
Gu MB  Todd P  Kompala DS 《Cytotechnology》1995,18(3):159-166
Foreign protein production levels in two recombinant Chinese hamster ovary (CHO) cell lines were compared in cells transfected with different expression vectors. One vector pNL1 contained the gene for neomycin resistance (neo r ) and thelacZ gene which codes for intracellular -galactosidase, with both genes controlled by the constitutive simian virus (SV40) promoter. The other vector CDG contained the amplifiabledhfr gene andlacZ gene, controlled by the constitutive SV40 and cytomegalovirus (CMV) promoters, respectively. Cell growth and -galactosidase expression were compared quantitatively after cells were selected in different concentrations of the neomycin analog G418 and methotrexate, respectively. A 62% reduction in growth rate occurred in recombinant CHO cells in which thelacZ anddhfr genes were highly amplified and expressed. In contrast, the combined effects of the unamplifiedneo r gene andlacZ gene expression on the growth kinetics were small. Any metabolic burden caused bylacZ gene expression, which was evaluated separately from the effect ofneo r gene expression, must be negligible, as higher expression of -galactosidase (1.5×10–6 units/cell) occurred in unamplified cells compared to the cells in whichlacZ was amplified by thedhfr-containing vector (3×10–7 units/cell). Thus, the main factor causing severe growth reduction (metabolic burden) in cells containing the amplifieddhfr gene system was not overexpression of -galactosidase butdhfr andlacZ gene co-amplification anddhfr gene expression.  相似文献   

11.
12.
13.
Introduction of foreign genes into target cells is a crucial step for achievement of gene therapy. We have recently developed a novel transfection system for eukaryotic cells, namely the electric pulse-activated gas plasma generator. To measure the transfection efficiency and mortality by flow-cytometry, we employed enhanced green fluorescent protein and propidium iodide staining, respectively. One day after the 1-3s plasma exposures with DNA concentration at 0.5 microg/microl, favorable transfection efficiencies (17.8-21.6%) and mortalities (0.65-2.86%) were obtained for HeLa-S3, HT-1080 and MCF-7 cells. The recipient cells became transiently permeable for plasmid DNA during the plasma exposure, suggesting that plasma-mediated transfection may involve similar mechanisms that accounts for electroporation. The relatively low mortality rates are encouraging in our attempt to apply this system to the various cell lines including the primary cell cultures.  相似文献   

14.
Gene expression reporter systems, in which a promoter of interest is cloned upstream of a readily assayed reporter gene, have been developed and used extensively to study gene expression in prokaryotes and eukaryotes. Unfortunately, most of these systems cannot be used to assay gene expression in nonsuperficial tissues in living organisms. This study examines a novel reporter gene system based on the gene encoding Escherichia coli polyphosphate kinase (PPK), which can be used to monitor gene expression in mammalian cells. PPK catalyzes the synthesis of inorganic polyphosphate (polyP) from ATP, and because mammalian cells do not contain detectable levels of polyP, PPK activity can be measured in mammalian cells using 31P-magnetic resonance spectroscopy or 31P-magnetic resonance imaging. The ppk reporter gene system described here is noninvasive, does not require an exogenous substrate, and can potentially be used in internal tissues of living organisms.  相似文献   

15.
16.
17.
We describe a strategy for the selection and amplification of foreign gene expression in Chinese hamster ovary (CHO) cells employing a metallothionein gene-containing expression vector. This report describes an amplification procedure that results in an enrichment of clones exhibiting high levels of recombinant protein production and reduces the labour required for screening recombinant cell lines.  相似文献   

18.
Recombinant DNA technology provides the potential to produce in large quantity previously scarce or even completely novel proteins by expression of cloned or designed genes in an appropriate host cell type. It has recently become clear that bacterial expression systems are often inappropriate for complex eukaryotic proteins but the high levels of expression of genes introduced into mammalian cells mean that bulk fermentation of animal cells provides an important alternative for the production of valuable proteins.  相似文献   

19.
The use of animal cells such as Chinese hamster ovary (CHO) cells for recombinant gene expression provides many advantageous features such as proper folding and post-translational modification of the recombinant protein. However, recombinant genes introduced into animal cells are often expressed at low levels mainly due to position effects from the neighboring chromatin context. The tedious and time-consuming selection and amplification procedure has been the major hurdle for using animal cell line such as CHO cells. To improve mammalian cell expression systems, we screened a variety of matrix/scaffold attachment region (MAR/SAR) elements for their ability to insulate transgene expression from the position effects in CHO cells. We found that the human beta-globin MAR element is particularly effective as the frequency of beta-Gal positive colonies was increased by up to 80%. The expression levels of these colonies were also enhanced about seven-fold. These improvements appear to be related to the increased copy numbers and a higher efficiency of expression of the integrated genes. When this element was used to express soluble TGF-beta type II receptor (sTbetaRII) through the gene amplification system, the frequency of colonies expressing detectable amounts of sTbetaRII was much higher than that of the control vector. We could also generate high sTbetaRII producers with uniform growth properties by a simple two-step amplification process involving two concentrations of methotrexate. This eliminates the need to isolate individual colonies followed by multi-step treatments of methotrexate and thereby greatly simplifies this mammalian expression system.  相似文献   

20.
Gene switches have wide utility in synthetic biology, gene therapy, and developmental biology, and multiple orthogonal gene switches are needed to construct advanced circuitry or to control complex phenotypes. Endogenous vascular endothelial growth factor (VEGF‐A) is crucial to angiogenesis, and it has been shown that multiple alternately spliced VEGF‐A isoforms are necessary for proper blood vessel formation. Such a necessity limits the utility of direct transgene delivery, which can provide only one splice variant. To overcome this limitation, we constructed a gene switch that can regulate the (VEGF‐A) locus in mammalian cells by combining an engineered estrogen receptor (ER) ligand‐binding domain (LBD), a p65 activation domain, and an artificial zinc‐finger DNA binding domain (DBD). Our gene switch is specifically and reversibly controlled by 4,4′‐dyhydroxybenzil (DHB), a small molecule, non‐steroid synthetic ligand, which acts orthogonally in a mammalian system. After optimization of the gene switch architecture, an endogenous VEGF‐A induction ratio of >100‐fold can be achieved in HEK293 cells at 1 µM DHB, which is the highest endogenous induction reported to date. In addition, induction has been shown to be reversible, repeatable, and sustainable. Another advantage is that the ligand response is tunable by varying the clonal composition of a stably integrated cell line. The integration of our findings with the technology to change ligand specificity and DNA binding specificity will provide the framework for generating a wide array of orthogonal gene switches that can control multiple genes with multiple orthogonal ligands. Biotechnol. Bioeng. 2013; 110: 1419–1429. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号