首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a targeted peptide-centric proteomics approach, we performed in vitro protease substrate profiling of the apoptotic serine protease granzyme B resulting in the delineation of more than 800 cleavage sites in 322 human and 282 mouse substrates, encompassing the known substrates Bid, caspase-7, lupus La protein, and fibrillarin. Triple SILAC (stable isotope labeling by amino acids in cell culture) further permitted intra-experimental evaluation of species-specific variations in substrate selection by the mouse or human granzyme B ortholog. For the first time granzyme B substrate specificities were directly mapped on a proteomic scale and revealed unknown cleavage specificities, uncharacterized extended specificity profiles, and macromolecular determinants in substrate selection that were confirmed by molecular modeling. We further tackled a substrate hunt in an in vivo setup of natural killer cell-mediated cell death confirming in vitro characterized granzyme B cleavages next to several other unique and hitherto unreported proteolytic events in target cells.  相似文献   

2.
Granzyme B is an important mediator of cytotoxic lymphocyte granule-induced death of target cells, accomplishing this through cleavage of Bid and cleavage and activation of caspases as well as direct cleavage of downstream substrates. Significant controversy exists regarding the primary pathways used by granzyme B to induce cell death, perhaps arising from the use of different protease/substrate combinations in different studies. The primary sequence of human, rat, and mouse granzymes B is well conserved, and the substrate specificity and crystal structure of the human and rat proteases are extremely similar. Although little is known about the substrate specificity of mouse granzyme B, recent studies suggest that it may differ significantly from the human protease. In these studies we show that the specificities of human and mouse granzymes B differ significantly. Human and mouse granzyme B cleave species-specific procaspase-3 more efficiently than the unmatched substrates. The distinct specificities of human and mouse granzyme B highlight a previously unappreciated requirement for Asp(192) in the acquisition of catalytic activity upon cleavage of procaspase-3 at Asp(175). Although human granzyme B efficiently cleaves human or mouse Bid, these substrates are highly resistant to cleavage by the mouse protease, strongly indicating that the Bid pathway is not a major primary mediator of the effects of mouse granzyme B. These studies provide important insights into the substrate specificity and function of the granzyme B pathway in different species and highlight that caution is essential when designing and interpreting experiments with different forms of granzyme B.  相似文献   

3.
Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using purified recombinant enzyme, several positional scanning libraries of coumarin substrates, and a panel of individual p-nitroanilide and coumarin substrates. In contrast to previous studies conducted using thiobenzyl ester substrates (Smyth, M. J., O'Connor, M. D., Trapani, J. A., Kershaw, M. H., and Brinkworth, R. I. (1996) J. Immunol. 156, 4174-4181), a strong preference for leucine at P1 over methionine was demonstrated. The extended substrate specificity was determined to be lysine = norleucine at P4, broad at P3, proline > alanine at P2, and leucine > norleucine > methionine at P1. The enzyme activity was found to be highly dependent on the length and sequence of substrates, indicative of a regulatory function for human granzyme M. Finally, the interaction between granzyme M and the serpins alpha(1)-antichymotrypsin, alpha(1)-proteinase inhibitor, and proteinase inhibitor 9 was characterized by using a candidate-based approach to identify potential endogenous inhibitors. Proteinase inhibitor 9 was effectively hydrolyzed and inactivated by human granzyme M, raising the possibility that this orphan granzyme bypasses proteinase inhibitor 9 inhibition of granzyme B.  相似文献   

4.
A human CD8+ CTL clone with cytolytic potential was shown to express two serine proteases, a 50-kDa homodimer and a 27-kDa monomer, which were purified from cytoplasmic granules. N-terminal sequencing of the purified proteins revealed that the 50-kDa homodimer is the gene product of the human Hanukah factor cDNA clone and that it represents the human homologue to granzyme A. Similarly, the 27-kDa protein was shown to be the serine esterase encoded by the human lymphocyte protease cDNA clone and corresponds to granzyme B. There was no evidence for the presence of other granzymes, in particular for the human homologues to murine granzymes C, D, E, and F. The substrate best cleaved by granzyme A was Gly-Pro-Arg-amido-4-methyl-coumarin after the Arg residue and the pH optimum was 8 to 8.5. Upon triggering of the TCR-CD3 complex with an anti-CD3 mAb, granzyme A was released into the culture medium. Furthermore, a granule-associated hemolytic activity was detected after salt extraction and partial purification of granule proteins. This suggests that hemolytically active human perforin can be obtained from inactive granules.  相似文献   

5.
To identify apoptotic targets of HtrA2/Omi, we purified recombinant HtrA2/Omi and its catalytically inactive S306A mutant. Lysates of human Jurkat T lymphocytes incubated with either wild-type recombinant HtrA2/Omi or the S306A mutant were screened using the gel-free COFRADIC approach that isolates peptides covering the N-terminal parts of proteins. Analysis of the 1162 proteins identified by mass spectrometry yielded 15 HtrA2/Omi substrates of potential physiological relevance together holding a total of 50 cleavage sites. Several processing events were validated by incubating purified recombinant HtrA2/Omi with in vitro translated substrates or with Jurkat cell lysates. In addition, the generated set of cleavage sites was used to assess the protein substrate specificity of HtrA2/Omi. Our results suggest that HtrA2/Omi has a rather narrow cleavage site preference and that cytoskeletal proteins are prime targets of this protease.  相似文献   

6.
Caspase-2 is considered an initiator caspase because its long prodomain contains a CARD domain that allows its recruitment and activation in several complexes by homotypic death domain-fold interactions. Because little is known about the function and specificity of caspase-2 and its physiological substrates, we compared the cleavage specificity profile of recombinant human caspase-2 with those of caspase-3 and -7 by analyzing cell lysates using N-terminal COmbined FRActional DIagonal Chromatography (COFRADIC). Substrate analysis of the 68 cleavage sites identified in 61 proteins revealed that the protease specificities of human caspases-2, -3, and -7 largely overlap, revealing the DEVD↓G consensus cleavage sequence. We confirmed that Asp563 in eukaryotic translation initiation factor 4B (eIF4B) is a cleavage site preferred by caspase-2 not only in COFRADIC setup but also upon co-expression in HEK 293T cells. These results demonstrate that activated human caspase-2 shares remarkably overlapping protease specificity with the prototype apoptotic executioner caspases-3 and -7, suggesting that caspase-2 could function as a proapoptotic caspase once released from the activating complex.  相似文献   

7.
Granzyme B is a serine protease of the chymotrypsin fold that mediates cell death by cytotoxic lymphocytes. It is a processing enzyme, requiring extended peptide substrates containing an Asp residue. The determinants that allow for this substrate specificity are revealed in the three-dimensional structure of granzyme B in complex with a macromolecular inhibitor. The primary specificity for Asp occurs through a side-on interaction with Arg 226, a buried Arg side chain of granzyme B. An additional nine amino acids make contact with the substrate and define the granzyme B extended substrate specificity profile. The substrate determinants found in this structure are shared by other members of this protein class and help to reveal the properties that define substrate specificity.  相似文献   

8.
Human peripheral blood mononuclear cells, activated for 14 to 20 days with 1000 U/ml rIL-2, develop strong cytotoxicity for NK sensitive and resistant targets. This process is accompanied by the acquisition of cytoplasmic granules in approximately 60% of the cells and by the expression of esterase activity cleaving the synthetic substrate BLT. The esterase activity, localized in the cytoplasmic granules, was purified and characterized. Three proteins with 3H-DFP binding activity were isolated and had the following properties. Following the proposed nomenclature by Masson et al., the esterases were named human granzymes 1, 2, and 3. Human granzyme 1 on SDS-PAGE has an unreduced relative m.w. of 43,000 and can form disulfide-linked oligomers of relative higher m.w. All forms of granzyme 1 bind 3H-DFP. Upon reduction, granzyme 1 migrates with Mr 30,000 on SDS-PAGE. Additional proteolytic fragments of Mr 24,000 and Mr 28,000 are observed in some reduced preparations. Granzyme 1 cleaves the substrate BLT and appears homologous with murine granzyme A. Human granzyme 2 has an unreduced relative m.w. of 30,000; after reduction, it migrates at Mr 32,000. Even though granzyme 2 binds 3H-DFT, it does not cleave BLT. Human granzyme 2 has properties similar to those of murine granzymes B-H. Human granzyme 3 has unreduced and reduced relative m.w. of 25,000 and 28,000, respectively. It is active in cleaving the substrate BLT. A murine analog for human granzyme 3 has not been described previously. N-terminal sequencing of the purified human granzymes revealed that human granzyme 1 is the gene product of human Hanuka factor cDNA clone and that it represents the human homolog to murine granzyme A. Similarly, human granzyme 2 revealed absolute identity with cDNA-derived N-terminal sequence of a putative human lymphocyte protease cDNA clone.  相似文献   

9.
The active site structures of human Q31 granzyme A, murine granzymes (A, B, C, D, E, and F), and human granzymes (A, B, and 3) isolated from cytotoxic T lymphocytes (CTL) were studied with peptide thioester substrates, peptide chloromethyl ketone, and isocoumarin inhibitors. Human Q31, murine, and human granzyme A hydrolyzed Arg- or Lys-containing thioesters very efficiently with kcat/KM of 10(4)-10(5) M-1 s-1. Murine granzyme B was found to have Asp-ase activity and hydrolyzed Boc-Ala-Ala-Asp-SBzl with a kcat/KM value of 2.3 X 10(5) M-1 s-1. The rate was accelerated 1.4-fold when the 0.05 M NaCl in the assay was replaced with CaCl2. The preparation of granzyme B also had significant activity toward Boc-Ala-Ala-AA-SBzl substrates, where AA was Asn, Met, or Ser [kcat/KM = (4-5) X 10(4) M-1 s-1]. Murine granzymes C, D, and E did not hydrolyze any thioester substrate but contained minor contaminating activity toward Arg- or Lys-containing thioesters. Murine granzyme F had small activity toward Suc-Phe-Leu-Phe-SBzl, along with some contaminating trypsin-like activity. Human Q31 granzyme A, murine, and human granzyme A were inhibited quite efficiently by mechanism-based isocoumarin inhibitors substituted with basic groups (guanidino or isothiureidopropoxy). Although the general serine protease inhibitor 3,4-dichloroisocoumarin (DCI) inactivated these tryptases poorly, it was the best isocoumarin inhibitor for murine granzyme B (kobs/[I] = 3700-4200 M-1 s-1). Murine and human granzyme B were also inhibited by Boc-Ala-Ala-Asp-CH2Cl; however, the inhibition was less potent than that with DCI. DCI, 3-(3-amino-propoxy)-4-chloroisocoumarin, 4-chloro-3-(3-isothiureidopropoxy)isocoumarin, and 7-amino-4-chloro-3-(3-isothiureidopropoxy)isocoumarin inhibited Q31 cytotoxic T lymphocyte mediated lysis of human JY lymphoblasts (ED50 = 0.5-5.0 microM).  相似文献   

10.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

11.
The physiologic substrates of cytotoxic T lymphocyte granule-associated serine esterases (referred to hereafter as proteases or "granzymes"), and the role of these enzymes in cell-mediated activity remain unclear. We have developed an assay for possible ligands of the trypsin-like dimeric serine protease granzyme A based on Western immunoblotting techniques. This protein-binding assay demonstrates the selective binding of granzyme A to several proteins present in the target cell P815. The binding specificity is preserved when enzyme binding is performed in the presence of excess competing proteins, including such cationic species as lysozyme and RNase. Enzyme binding is inhibited, however, by heat or detergent inactivation of granzyme A. Subcellular fractionation of target cells shows that the nuclear fraction contains most granzyme A binding reactivity, which is recovered in the nuclear salt wash fraction. A protein with Mr = 100,000 and two closely migrating proteins with Mr = 35,000 and 38,000 are the predominant reactive moieties, and the N-terminal sequence of the 100-kDa protein confirmed that this protein was murine nucleolin. Incubation of granzyme A with nucleolin generates a discrete proteolytic cleavage product of Mr = 88,000. Since nucleolin is known to shuttle between nucleus and cytoplasm, the interaction of granzyme A and nucleolin may be important in the process of apoptosis which accompanies cytotoxic T lymphocyte-mediated lysis of target cells.  相似文献   

12.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

13.
A cDNA clone corresponding to the complete amino acid sequence of a putative protease CCP2 of murine cytotoxic T lymphocytes was isolated and sequenced. The clone encodes a 248-residue long serine esterase. The deduced N-terminal amino acid sequence is identical over 40 residues to that of granzyme C, a protease of unknown function present in granules of cytotoxic lymphocytes. Analysis of the sequence of granzyme C/CCP2 reveals high homology to other granzyme proteases, i.e. granzyme A (40%) and granzyme B (67%) and to rat mast cell protease II (46%). The amino acids lining the specificity pocket are well conserved between granzyme B, C, and rat mast cell protease II, but not granzyme A, suggesting a similar general specificity of these three proteases.  相似文献   

14.
Addition of an N-terminal fusion partner can greatly aid the expression and purification of a recombinant protein in Escherichia coli. We investigated two genetically engineered proteases designed to remove the fusion partner after the protein of interest has been expressed. Recombinant human insulin-like growth factor-II (hIGF-II) has been produced from E. coli-derived fusion proteins using a novel enzymatic cleavage system that uses a mutant of alpha-lytic protease. Initially, two potential fusion protein linkers were designed, Pro-Ala-Pro-His (PAPH) and Pro-Ala-Pro-Met (PAPM), and were tested as substrates in the form of synthetic dodecapeptides. Using mass spectrometry and reverse-phase HPLC, the position of cleavage was confirmed and the kinetics of synthetic peptide cleavage were examined. Use of the linkers in hIGF-II fusion proteins produced in E. coli was then evaluated. The fusion proteins constructed consist of the first 11 amino acids of porcine growth hormone linked N-terminally to hIGF-II by six amino acids that include the dipeptide Val-Asn followed by a variable tetrapeptide protease cleavage motif. Mass spectrometry and N-terminal sequencing confirmed that proteolytic cleavage of the fusion proteins had occurred at the predicted sites. Using the fusion proteins as substrates, the cleavage of the rationally designed motifs by the alpha-lytic protease mutant was compared. The fusion protein containing the motif PAPM had a k(cat)/K(M) ratio indicating a 1.6-fold preference over the PAPH fusion protein for cleavage by this enzyme. Furthermore, when hIGF-II fusion proteins containing the designed cleavable linkers were processed with the engineered alpha-lytic protease, they gave greatly improved yields of native hIGF-II compared to an analogous fusion protein cleaved by H64A subtilisin. Comparison of the peptide and protein cleavage studies shows that the efficient proteolysis of the cleavage motifs is an inherent property of the designed sequences and is not determined by secondary or tertiary structure in the fusion proteins.  相似文献   

15.
A family of serine esterases in lytic granules of cytolytic T lymphocytes   总被引:38,自引:0,他引:38  
D Masson  J Tschopp 《Cell》1987,49(5):679-685
Cytoplasmic granules of cytolytic T lymphocytes (CTLs) contain, in addition to the pore-forming protein perforin, a family of highly homologous serine esterases, granzymes A-H. The serine esterase affinity label diisopropyl fluorophosphate reacts strongly with granzymes A and D, to a lesser extent with B, E, F, G, and H, and not at all with C and F. For granzymes A and D, synthetic substrates have been found. Antibodies raised against granzyme B strongly cross-react with A, G, and H, and antibodies to granzyme D recognize C, E, and F. These antigenic relationships correlate with similarities in the N-terminal amino acid sequences. At least 60% homology is observed between the eight proteins, and all are similar to rat mast cell protease 2. Sequence analysis suggests the identity of granzyme A with a protease predicted from a CTL-specific cDNA clone (H factor) and of granzyme B, G, or H with a protein encoded by the CTL-specific cDNA clone CTLA 1/CCP 1.  相似文献   

16.
Proteases are a family of proteolytically active enzymes whose dysfunction is implicated in a wide variety of human diseases. Although an estimated 2% of the human genome encodes for proteases, only a small fraction of these enzymes have well-characterized functions. Identification of the specificity and natural substrates of proteases in complex biological samples is challenging, but proteomic screens for proteases are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, fluorescent 2D difference gel electrophoresis with mass spectrometry, differential isotope labeling in combination with mass spectrometry, quantitative degradomics analysis of proteolytically generated neo-N-termini, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify protease specificity, cleavage sites and natural substrates with a particular focus on the cytotoxic lymphocyte granule serine proteases granzymes.  相似文献   

17.
Identification of protease substrates and detailed characterization of processed sites are essential for understanding the biological function of proteases. Because of inherent complexity reasons, this however remains a formidable analytical challenge, illustrated by the fact that the majority of the more than 500 human proteases are uncharacterized to date. Recently, in addition to conventional genetic and biochemical approaches, diverse quantitative peptide-centric proteomics approaches, some of which selectively recover N-terminal peptides, have emerged. These latter proteomic technologies in particular allow the identification of natural protease substrates and delineation of cleavage sites in a complex, natural background of thousands of different proteins. We here review current biochemical, genetic and proteomic methods for global analysis of substrates of proteases and discuss selected applications.  相似文献   

18.
The cell death-inducing serine protease granzyme A (GzmA) has a unique disulfide-linked quaternary structure. The structure of human GzmA bound to a tripeptide CMK inhibitor, determined at a resolution of 2.4 A, reveals that the oligomeric state contributes to substrate selection by limiting access to the active site for potential macromolecular substrates and inhibitors. Unlike other serine proteases, tetrapeptide substrate preferences do not correlate well with natural substrate cleavage sequences. This suggests that the context of the cleavage sequence within a macromolecular substrate imposes another level of selection not observed with the peptide substrates. Modeling of inhibitors bound to the GzmA active site shows that the dimer also contributes to substrate specificity in a unique manner by extending the active-site cleft. The crystal structure, along with substrate library profiling and mutagenesis, has allowed us to identify and rationally manipulate key components involved in GzmA substrate specificity.  相似文献   

19.
The cytotoxic lymphocyte protease granzyme B (GzmB) can promote apoptosis through direct processing and activation of members of the caspase family. GzmB can also cleave the BH3-only protein, BID, to promote caspase-independent mitochondrial permeabilization. Although human and mouse forms of GzmB exhibit extensive homology, these proteases diverge at residues predicted to influence substrate binding. We show that human and mouse GzmB exhibit radical differences in their ability to cleave BID, as well as several other key substrates, such as ICAD and caspase-8. Moreover, pharmacological inhibition of caspases clonogenically rescued human and mouse target cells from apoptosis initiated by mouse GzmB, but failed to do so in response to human GzmB. These data demonstrate that human and murine GzmB are distinct enzymes with different substrate preferences. Our observations also illustrate how subtle differences in enzyme structure can radically affect substrate selection.  相似文献   

20.
Granzymes are trypsin-like serine proteases mediating apoptotic cell death that are composed of two genetically distinct subfamilies: granzyme A-like proteases resemble trypsin in their active site architecture, while granzyme B-like proteases are quite distinct. Granzyme B prefers substrates containing P4 to P1 amino acids Ile/Val, Glu/Met/Gln, Pro/Xaa, and aspartic acid N-terminal to the proteolytic cleavage. By investigating the narrow extended specificity of the granzyme B-like proteases the mediators of their unique specificity are being defined. The foci of this study were the structural determinants Ile99, Tyr174, Arg192, and Asn218. Even modest mutations of these residues resulted in unique extended specificity profiles as determined using combinatorial substrate libraries and individual fluorogenic substrates. As with other serine proteases, Ile99 completely defines and predicts P2 specificity, primarily through the binding constant Km. Asn218 variants have minor effects alone but in combination with mutations at Arg192 and Ile99 alter P2 through P4 extended specificity. For each variant, the activity on its cognate substrate was equal to that of granzyme B for the same substrate. Thus, mutations at these determinants change extended selectivity preferentially over catalytic power. Additionally Asn218 variants result in increased activity on the wild type substrate, while the N218A/I99A variant disrupts the additivity between P2 and P4 specificity. This defines Asn218 not only as a determinant of specificity but also as a structural component required for P2 and P4 independence. This study confirms four determinants of granzyme B extended substrate specificity that constitute a canon applicable to the study of the remaining family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号