首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.  相似文献   

2.
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.  相似文献   

3.
We previously reported that activation of nicotinic receptors causes an enhancement in amphetamine-stimulated release of dopamine via its transporter from slices of prefrontal cortex, but no such enhancement of release from slices of nucleus accumbens or striatum. The nicotinic receptors mediating the enhancement most likely contain alpha4 and beta2 subunits based upon pharmacological characterization. In this study, we sought to characterize the second messenger systems associated with the nicotine-mediated response. Sodium channel involvement was confirmed by the observation that tetrodotoxin blocked nicotine-mediated enhancement, whereas veratridine or elevated K(+) mimicked the enhancement seen with nicotine. Inclusion of EGTA blocked nicotine-mediated enhancement, suggesting that, even though no exogenous Ca(2+) was added, endogenous stores were required for the enhancement. The enhancement by nicotine was also abolished by the L-type voltage-dependent calcium channel (VDCC) antagonist nitrendipine, but not by the N-type VDCC antagonist omega-conotoxin GVIA. Finally, inhibition of protein kinase C also abolished the nicotine-mediated enhancement of amphetamine-stimulated dopamine release, whereas inhibitors of Ca(2+)/calmodulin kinase II did not. These findings establish that nicotine can exert selective effects on dopamine transporter activity in prefrontal cortex, an area involved in cognition and learning.  相似文献   

4.
5.
Substrates dissociate dopamine transporter oligomers   总被引:1,自引:0,他引:1  
Substrate-induced endocytic trafficking of dopamine transporter (DAT) has been observed, but little is known about the regulation of DAT oligomerization by substrate. The present study investigates the effect on substrates on DAT oligomerization and explores a potential link with the presence of DAT at the cell surface in human embryonic kidney cells transiently or stably expressing N-terminal tagged DAT constructs. Dopamine (100 μM) or amphetamine (2–10 μM) reduced Myc-DAT coimmunoprecipitated along with Flag-DAT (oligomeric DAT) in tandem with a reduction in surface DAT determined by biotinylation. Dopamine (10–1000 μM) and amphetamine (0.2–200 μM) reduced DAT oligomerization as assessed by cross-linking with copper sulfate phenanthroline or Cu2+. Inhibition of endocytosis by 10 μM phenylarsine oxide or 450 mM sucrose counteracted the effect of 10 μM DA or 2 μM amphetamine in reducing DAT cross-linking. In addition to overall similarities between the results with the two cross-linking agents and between the results with the two different endocytosis inhibitors, some differences were noted as well, likely related to the efficiency of the cross-linking process and the sulfhydryl-reactive properties of phenylarsine oxide, respectively. The present results are the first to indicate regulation of oligomerization of an solute carrier family 6 transporter, the DAT, by substrates that act at DAT. In addition, the present study opens up the possibility of an important linkage between oligomerization of DAT and endocytic or other modulatory mechanisms impacting surface DAT.  相似文献   

6.
Neurological development and functioning of dopamine (DA) neurotransmission is adversely affected by iron deficiency in early life. Iron-deficient rats demonstrate significant elevations in extracellular DA and a reduction in dopamine transporter (DAT) densities in the caudate putamen and nucleus accumbens. To explore possible mechanisms by which cellular iron concentrations control DAT functioning, endogenous DAT-expressing PC12 cells were used to determine the effect of iron chelation on DAT protein and mRNA expression patterns. In addition, we used human DAT (hDAT)-transfected Neuro2a (N2A) cells to examine DAT degradation and trafficking patterns. A 50 microM treatment for 24 h with the iron chelator, desferrioxamine (DFO), significantly decreased dopamine uptake in a dose-dependent manner, with no apparent change in K(m), in both PC12 and N2A cells. Reduced DA uptake was accompanied by concentration- and time-dependent reductions in total DAT protein levels in both cell lines. Exposure to increasing concentrations of DFO did not significantly alter DAT mRNA in either PC12 or N2A cells. However, DAT degradation rates increased three-fivefold in both cell types exposed to 50 microM DFO for 24 h. Biotinylation studies in N2A cells indicate a more dramatic loss of DAT in the membrane fraction, while OptiPrep fractionation experiments revealed an increase in lysosomal DAT with iron chelation. Inhibition of protein kinase C activation with staurosporin prevented the effect of iron chelation on DAT function, suggesting that in vitro iron chelation affects DAT primarily through the effects on trafficking rather than on synthesis.  相似文献   

7.
8.
9.
10.
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells'' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.  相似文献   

11.
l ‐dopa‐induced dyskinesias (LIDs) are a side effect of Parkinson's disease therapy that is thought to arise, at least in part, because of excessive dopaminergic activity. Thus, drugs that regulate dopaminergic tone may provide an approach to manage LIDs. Our previous studies showed that nicotine treatment reduced LIDs in Parkinsonian animal models. This study investigates whether nicotine may exert its beneficial effects by modulating pre‐synaptic dopaminergic function. Rats were unilaterally lesioned by injection of 6‐hydroxydopamine (6‐OHDA) (2 × 3 ug per site) into the medial forebrain bundle to yield moderate Parkinsonism. They were then implanted with minipumps containing vehicle or nicotine (2.0 mg/kg/d) and rendered dyskinetic with l ‐dopa (8 mg/kg plus 15 mg/kg benserazide). Lesioning alone decreased the striatal dopamine transporter, nicotinic receptor (nAChR) levels, and nAChR‐mediated 3H‐dopamine release, consistent with previous results. Nicotine administration reduced l ‐dopa‐induced abnormal involuntary movements throughout the course of the study (4 months). Nicotine treatment led to declines in the striatal dopamine transporter, α6β2* nAChRs and various components of α6β2* and α4β2* nAChR‐mediated release. l ‐dopa treatment had no effect. These data suggest that nicotine may improve LIDs in Parkinsonian animal models by dampening striatal dopaminergic activity.  相似文献   

12.
13.
Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 micro m) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 micro m Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.  相似文献   

14.
A presynaptic membrane disturbance is an essential process for the release of various neurotransmitters. Ceramide, which is a tumor suppressive lipid, has been shown to act as a channel-forming molecule and serve as a precursor of ceramide-1-phosphate, which can disturb the cellular membrane. This study found that while permeable ceramide increases the rate of dopamine release in the presence of a Ca(2+)-ionophore, A23187, permeable ceramide-1-phosphate provoked its release even without the ionophore. The treatment of PC12 cells with the ionophore at concentrations < 2 microM produced ceramide via the sphingomyelin (SM) pathway with a concomitant release of dopamine, and no cell damage was observed. The addition of a Ca(2+) chelator, EGTA, to the medium inhibited the increase in the release of both the ceramide and dopamine. This suggests that ceramide might be produced by Ca(2+) and is implicated in the membrane disturbance associated with the release of dopamine as a result of its conversion to ceramide-1-phosphate. Consistent with these results, this study detected a membrane-associated and neutral pH optimum sphingomyelinase (SMase) whose activity was increased by Ca(2+). Together, these results demonstrate that ceramide can be produced via the activation of a neutral form of SMase through Ca(2+), and is involved in the dopamine release in concert with Ca(2+).  相似文献   

15.
The amount of dopamine transporter (DAT) present at the cell surface is rapidly regulated by the rates of DAT internalization to endosomes and DAT recycling back to the plasma membrane. The re-distribution of the transporter from the cell surface to endosomes was induced by phorbol ester activation of protein kinase C in porcine aortic endothelial cells stably expressing the human DAT. Inhibition of DAT recycling with the carboxylic ionophore monensin also caused significant accumulation of DAT in early endosomes and a concomitant loss of DAT from the cell surface, due to protein kinase C-independent constitutive internalization of DAT in the absence of recycling. Such monensin-induced relocation of DAT to endosomes was therefore utilized as a measure of the constitutive internalization of DAT. Knock-down of clathrin heavy chain or dynamin II by small interfering RNAs dramatically inhibited both constitutive and protein kinase C-mediated internalization of DAT. In contrast, neither monensin-dependent nor phorbol ester-induced re-distribution of DAT were affected by inhibitors of endocytosis through cholesterol-rich membrane microdomains. Mutational analysis revealed the potential importance of amino acid residues 587-597 in DAT internalization. Altogether, the data suggest that both constitutive and protein kinase C-mediated internalization of DAT utilize the clathrin-dependent endocytic pathway, but likely involve unconventional mechanisms.  相似文献   

16.
17.
18.
The dopamine transporter shapes dopaminergic neurotransmission by clearing extracellular dopamine and by replenishing vesicular stores. The dopamine transporter carries an endogenous binding site for Zn2+, but the nature of the Zn2+-dependent modulation has remained elusive: both, inhibition and stimulation of DAT have been reported. Here, we exploited the high time resolution of patch-clamp recordings to examine the effects of Zn2+ on the transport cycle of DAT: we recorded peak currents associated with substrate translocation and steady-state currents reflecting the forward transport mode of DAT. Zn2+ depressed the peak current but enhanced the steady-state current through DAT. The parsimonious explanation is preferential binding of Zn2+ to the outward facing conformation of DAT, which allows for an allosteric activation of DAT, in both, the forward transport mode and substrate exchange mode. We directly confirmed that Zn2+ dissociated more rapidly from the inward- than from the outward-facing state of DAT. Finally, we formulated a kinetic model for the action of Zn2+ on DAT that emulated all current experimental observations and accounted for all previous (in part contradictory) findings. Importantly, the model predicts that the intracellular Na+ concentration determines whether substrate uptake by DAT is stimulated or inhibited by Zn2+. This prediction was directly verified. The mechanistic framework provided by the current model is of relevance for the rational design of allosteric activators of DAT. These are of interest for treating de novo loss-of-function mutations of DAT associated with neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD).  相似文献   

19.
Central serotonin(3) (5-HT(3)) receptors control the mesoaccumbens dopamine (DA) pathway. This control is thought to be conditional and might involve regionally distinct subpopulations of 5-HT(3) receptors. Here, using in vivo microdialysis in rats, we assessed the relative contribution of nucleus accumbens (Nacc) 5-HT(3) receptors to the overall influence exerted by 5-HT(3) receptors on accumbal DA release induced by different drugs or treatments. In freely moving rats, pre-treatment with 5-HT(3) antagonists (0.1 mg/kg ondansetron and/or 0.03 mg/kg MDL 72222, s.c.) reduced DA efflux enhanced by morphine (1-10 mg/kg, s.c.) and haloperidol (0.01 mg/kg, s.c.), but not amphetamine (1-2.5 mg/kg, i.p.) or cocaine (10-20 mg/kg, i.p.), the latter two drugs do not trigger depolarization-stimulated DA exocytosis. Intra-Nacc administration of ondansetron (1 microm) in freely moving rats reduced the DA effects elicited by 10 mg/kg morphine, but not 1 mg/kg morphine or haloperidol. The 5-HT(1A) agonist 8-OH-DPAT (0.1 mg/kg, s.c.), known to decrease central 5-HT tone, reduced 10 but not 1 mg/kg morphine-stimulated DA outflow in freely moving rats. In halothane-anaesthetized rats, intra-Nacc ondansetron (1 microm) application reduced dorsal raphe nucleus electrical stimulation (20Hz)-induced DA outflow. Our results show that regionally distinct populations of 5-HT(3) receptors control the depolarization-dependent exocytosis of DA and suggest that the involvement of Nacc 5-HT(3) receptors occurs only when central DA and 5-HT tones are concomitantly increased.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号