首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility to isolate canine mesenchymal stem cells (MSCs) from foetal adnexa is interesting since several canine genetic disorders are reported to resemble similar dysfunctions in humans. In this study, we successfully isolated, cytogenetically and molecularly characterized, and followed the differentiation potency of canine MSCs from foetal adnexa, such as amniotic fluid (AF), amniotic membrane (AM), and umbilical cord matrix (UCM). In the three types of cell lines, the morphology of proliferating cells typically appeared fibroblast‐like, and the population doubling time (DT) significantly increased with passage number. For AF‐ and AM‐MSCs, cell viability did not change with passages. In UCM‐MSCs, cell viability remained at approximately constant levels up to P6 and significantly decreased from P7 (P < 0.05). Amnion and UCM‐MSCs expressed embryonic and MSC markers, such as Oct‐4 CD44, CD184, and CD29, whereas AF‐MSCs expressed Oct‐4, CD44. Expression of the hematopoietic markers CD34 and CD45 was not found. Dog leucocyte antigens (DLA‐DRA1 and DLA‐79) were expressed only in AF‐MSCs at P1. Isolated cells of the three cell lines at P3 showed multipotent capacity, and differentiated in vitro into neurocyte, adipocyte, osteocyte, and chondrocyte, as demonstrated by specific stains and expression of molecular markers. Cells at P4 showed normal chromosomal number, structure, and telomerase activity. These results demonstrate that, in dog, MSCs can be successfully isolated from foetal adnexa and grown in vitro. Their proven stemness and chromosomal stability indicated that MSCs could be used as a model to study stem cell biology and have an application in therapeutic programs. Mol. Reprod. Dev. 78:361–373, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
Mesenchymal Stem Cells (MSCs), have been defined and characterized by: 1) their ability to adhere to plastic culture flasks; 2) the positive expression of CD105, CD73, CD90 membrane antigens, and the lack of expression of others (e.g CD45 and CD34) and 3) the ability of differentiation under adequate conditions along the osteogenic, chondrogenic and adipogenic lineages. In recent years cells with these characteristics have been isolated from the Wharton Jelly (WJ) of the Umbilical Cord (UC). Similarly to bone marrow MSCs they have shown multilineage differentiation potential and to be able to provide trophic support to neighboring cells. According to the literature, there are two main populations of cells with a mesenchymal character within the human UC: Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) and Human Umbilical Cord Perivascular Cells (HUCPVCs). In the present work our aim is to make a comprehensive review on MSCs populations of the WJ and how these cell populations may be used for future applications in CNS regenerative medicine. Following a brief insight on the general characteristics of MSC like cells, we will discuss the possible sources of stem cells within the WJ and the cord itself (apart UC blood), as well as their phenotypic character. As it has already been shown that these cells hold a strong trophic support to neighbouring cell populations, we will then focus on their secretome, namely which molecules have already been identified within it and their role in phenomena such as immunomodulation. The possible applications of these cells populations to CNS regenerative medicine will be addressed by critically reviewing the work that has been performed so far in this field. Finally, a brief insight will be made on what in the authors' opinion are the major challenges in the field for the future application of these cell populations in CNS regenerative medicine.  相似文献   

3.
Perivascular cells are known to be ancestors of mesenchymal stem cells (MSCs) and can be obtained from heart, skin, bone marrow, eye, placenta and umbilical cord (UC). However detailed characterization of perivascular cells around the human UC vein and comparative analysis of them with MSCs haven’t been done yet. In this study, our aim is to isolate perivascular cells from human UC vein and characterize them versus UC blood MSCs (UCB-MSCs). For this purpose, perivascular cells around the UC vein were isolated enzymatically and then purified with magnetic activated cell sorting (MACS) method using CD146 Microbead Kit respectively. MSCs were isolated from UCB by Ficoll density gradient solution. Perivascular cells and UCB-MSCs were characterized by osteogenic and adipogenic differentiation procedures, flow cytometric analysis [CD146, CD105, CD31, CD34, CD45 and alpha-smooth muscle actin (α-SMA)], and immunofluorescent staining (MAP1B and Tenascin C). Alizarin red and Oil red O staining results showed that perivascular cells and MSCs had osteogenic and adipogenic differentiation capacity. However, osteogenic differentiation capacity of perivascular cells were found to be less than UCB-MSCs. According to flow cytometric analysis, CD146 expression of perivascular cells were appeared to be 4.8-fold higher than UCB-MSCs. Expression of α-SMA, MAP1B and Tenascin-C from perivascular cells was determined by flow cytometry analysis and immunfluorescent staining. The results appear to support the fact that perivascular cells are the ancestors of MSCs in vascular area. They may be used as alternative cells to MSCs in the field of vascular tissue engineering.  相似文献   

4.
Mesenchymal stem cells from cryopreserved human umbilical cord blood   总被引:32,自引:0,他引:32  
Umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, but the presence of mesenchymal stem cells (MSCs) in UCB has been disputed and it remains to be validated. In this study, we examined the ability of cryopreserved UCB harvests to produce cells with characteristics of MSCs. We were able to obtain homogeneous plastic adherent cells from the mononuclear cell fractions of cryopreserved UCB using our culture conditions. These adherent cell populations exhibited fibroblast-like morphology and typical mesenchymal-like immunophenotypes (CD73+, CD105+, and CD166+, etc.). These cells presented the self-renewal capacity and the mesenchymal cell-lineage potential to form bone, fat, and cartilage. Moreover, they expressed mRNAs of multi-lineage genes including SDF-1, NeuroD, and VEGF-R1, suggesting that the obtained cells had the multi-differentiation capacity as bone marrow-derived MSCs. These results indicate that cryopreserved human UCB fractions can be used as an alternative source of MSCs for experimental and therapeutic applications.  相似文献   

5.
Mesenchymal stem cells (MSCs) have been isolated based on the ability of adherence to plastic surfaces. The potential of these cells to differentiate along multiple lineages is the key to identifying stem cell populations in the absence of molecular markers. Here we describe a homogenous population of MSCs from mouse bone marrow isolated using a relatively straightforward and novel approach. This method is based on the combination of frequent medium change (FMC) and treatment of the primary cultures with trypsin. Cells isolated using this method demonstrated the MSCs characteristics including their ability to differentiate into mesenchymal lineages. MSCs retained the differentiation potentials in expanded cultures up to 10 passages. Isolated MSCs were reactive to the CD44, Sca-1, and CD90 cell surface markers. MSCs were negative for the hematopoietic surface markers such as CD34, CD11b, CD45, CD31, CD106, CD117 and CD135. The data presented in this report indicated that this method can result in efficient isolation of homogenous populations of MSCs from mouse bone marrow.  相似文献   

6.
Since the discovery of mesenchymal stem/stromal cells (MSCs), the native identity and localization of MSCs have been obscured by their retrospective isolation in culture. Recently, using fluorescence-activated cell sorting (FACS), we and other researchers prospectively identified and purified three subpopulations of multipotent precursor cells associated with the vasculature of human skeletal muscle. These three cell populations: myogenic endothelial cells (MECs), pericytes (PCs), and adventitial cells (ACs), are localized respectively to the three structural layers of blood vessels: intima, media, and adventitia. All of these human blood-vessel-derived stem cell (hBVSC) populations not only express classic MSC markers but also possess mesodermal developmental potentials similar to typical MSCs. Previously, MECs, PCs, and ACs have been isolated through distinct protocols and subsequently characterized in separate studies. The current isolation protocol, through modifications to the isolation process and adjustments in the selective cell surface markers, allows us to simultaneously purify all three hBVSC subpopulations by FACS from a single human muscle biopsy. This new method will not only streamline the isolation of multiple BVSC subpopulations but also facilitate future clinical applications of hBVSCs for distinct therapeutic purposes.  相似文献   

7.
Ex vivo-expanded mesenchymal stem cells (MSCs) have been demonstrated to be a heterogeneous mixture of cells exhibiting varying proliferative, multipotential, and immunomodulatory capacities. However, the exact characteristics of MSCs remain largely unknown. By single-cell RNA sequencing of 61,296 MSCs derived from bone marrow and Wharton’s jelly, we revealed five distinct subpopulations. The developmental trajectory of these five MSC subpopulations was mapped, revealing a differentiation path from stem-like active proliferative cells (APCs) to multipotent progenitor cells, followed by branching into two paths: 1) unipotent preadipocytes or 2) bipotent prechondro-osteoblasts that were subsequently differentiated into unipotent prechondrocytes. The stem-like APCs, expressing the perivascular mesodermal progenitor markers CSPG4/MCAM/NES, uniquely exhibited strong proliferation and stemness signatures. Remarkably, the prechondrocyte subpopulation specifically expressed immunomodulatory genes and was able to suppress activated CD3+ T cell proliferation in vitro, supporting the role of this population in immunoregulation. In summary, our analysis mapped the heterogeneous subpopulations of MSCs and identified two subpopulations with potential functions in self-renewal and immunoregulation. Our findings advance the definition of MSCs by identifying the specific functions of their heterogeneous cellular composition, allowing for more specific and effective MSC application through the purification of their functional subpopulations.  相似文献   

8.
Mesenchymal stem-like cells identified in different tissues reside in a perivascular niche. In the present study, we investigated the putative niche of adipose-derived stromal/stem cells (ASCs) using markers, associated with mesenchymal and perivascular cells, including STRO-1, CD146, and 3G5. Immunofluorescence staining of human adipose tissue sections, revealed that STRO-1 and 3G5 co-localized with CD146 to the perivascular regions of blood vessels. FACS was used to determine the capacity of the CD146, 3G5, and STRO-1 specific monoclonal antibodies to isolate clonogenic ASCs from disassociated human adipose tissue. Clonogenic fibroblastic colonies (CFU-F) were found to be enriched in those cell fractions selected with either STRO-1, CD146, or 3G5. Flow cytometric analysis revealed that cultured ASCs exhibited similar phenotypic profiles in relation to their expression of cell surface markers associated with stromal cells (CD44, CD90, CD105, CD106, CD146, CD166, STRO-1, alkaline phosphatase), endothelial cells (CD31, CD105, CD106, CD146, CD166), haematopoietic cells (CD14, CD31, CD45), and perivascular cells (3G5, STRO-1, CD146). The immunoselected ASCs populations maintained their characteristic multipotential properties as shown by their capacity to form Alizarin Red positive mineralized deposits, Oil Red O positive lipid droplets, and Alcian Blue positive proteoglycan-rich matrix in vitro. Furthermore, ASCs cultures established from either STRO-1, 3G5, or CD146 selected cell populations, were all capable of forming ectopic bone when transplanted subcutaneously into NOD/SCID mice. The findings presented here, describe a multipotential stem cell population within adult human adipose tissue, which appear to be intimately associated with perivascular cells surrounding the blood vessels.  相似文献   

9.
Objectives: We have investigated foetal mesenchymal stem cells (MSCs) obtained from first‐trimester chorionic villi (CV) and second‐trimester amniotic fluid (AF), comparing them to adult bone marrow‐derived MSCs. Materials and methods: We report on cell population growth in human allogeneic serum (HS) and platelet lysate (PL), immunophenotype, cytokine expression profile and immunoregulatory activity, of these foetal MSCs on stimulated peripheral blood mononuclear and lymphocyte subpopulations. Results: Chorionic villi cells grow rapidly in HS, with 20 populations doublings (PDs) after 59 days (six passages), and also in animal serum, with 27 PDs after 65 days (seven passages). PL allowed for expansion in 60% of the samples tested, although it was lower than in HS. HS supported an average of 40 PDs of expansion in 20% of AF cells after 90 days, whereas animal serum supported 28.5 PDs in 66 days. CV and AF cells inhibited proliferation of stimulated T lymphocytes, suppressing population growth of both CD4+ and CD8+ T subpopulations and sometimes also, CD19+ cells. Conclusions: Our results indicate that CV would be an optimal source of MSCs with high expansion potential in a HS propagation system and immunoregulatory capacity of T and B lymphocytes. More than 90% of CV samples achieved large‐scale expansion in HS, which is encouraging for potential clinical applications of these cells.  相似文献   

10.
Multipotent mesenchymal stromal cells(MSC),have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation.The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair.However,some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist.In brain,perivascular MSCs like pericytes and adventitial cells,could constitute another stem cell population distinct to the neural stem cell pool.The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes,the demonstration of neural biomarkers expression,electrophysiological recordings,and the absence of cell fusion.The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells.It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.  相似文献   

11.
Stem cell niches are composed of numerous microenvironmental features, including soluble and insoluble factors, cues from other cells, and the extracellular matrix (ECM), which collectively serve to maintain stem cell quiescence and promote their ability to support tissue homeostasis. A hallmark of many adult stem cell niches is their proximity to the vasculature in vivo, a feature common to neural stem cells, mesenchymal stem cells (MSCs) from bone marrow and adipose tissue, hematopoietic stem cells, and many tumor stem cells. In this study, we describe a novel 3D microfluidic device (MFD) as a model system in which to study the molecular regulation of perivascular stem cell niches. Endothelial cells (ECs) suspended within 3D fibrin gels patterned in the device adjacent to stromal cells (either fibroblasts or bone marrow‐derived MSCs) executed a morphogenetic process akin to vasculogenesis, forming a primitive vascular plexus and maturing into a robust capillary network with hollow well‐defined lumens. Both MSCs and fibroblasts formed pericytic associations with the ECs but promoted capillary morphogenesis with distinct kinetics. Biochemical assays within the niche revealed that the perivascular association of MSCs required interaction between their α6β1 integrin receptor and EC‐deposited laminin. These studies demonstrate the potential of this physiologically relevant ex vivo model system to study how proximity to blood vessels may influence stem cell multipotency. Biotechnol. Bioeng. 2010;107: 1020–1028. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
目的探讨人脐带间充质干细胞(MSCs)体外分离培养的最佳方法。方法无菌条件下采集早产儿(不足37周)和足月儿的脐带,分离MSCs,比较胎龄、脐带新鲜程度、分离方法和不同培养基对脐带MSCs原代培养过程的影响,通过免疫荧光法检测脐带MSCs表面标记物的表达情况,观察脐带MSCs的生物学特性。结果足月分娩,新鲜脐带,采用组织块平铺法和MesencultTM培养基,脐带MSCs原代培养成功率较高。相同条件下,早产儿脐带MSCs原代培养成功率低于足月分娩脐带。人脐带MSCs高表达CD44、CD90和CD29。结论筛选出一种人脐带MSCs体外分离培养的最佳方法。  相似文献   

13.
Stem cell niches provide the micro-environment for the development of stem cells. Under our culturing regimen, a kind of osteoclast-centralized structure supports the proliferation of MSCs, derived from human cord blood, once they reside on osteoclasts. MSCs in this structure expressed Oct4 which is a marker of embryonic stem cells. Floating daughter cells of MSCs colony showed abilities to differentiate into osteocyte, adipocyte, and neuronal progenitor cells. Compared with the easy senescence of MSCs without this niche-like structure in vitro, these results suggested that osteoclasts might play an important role the development and maintenance of Umbilical cord blood (UCB)-derived MSCs and might provide a means to expand UCB-MSCs in vitro, more easily, through a stem cell niche-like structure.  相似文献   

14.
The skin is a rich source of readily accessible stem cells. The level of plasticity afforded by these cells is becoming increasingly important as the potential of stem cells in Cell Therapy and Regenerative Medicine continues to be explored. Several protocols described single type stem cell isolation from skin; however, none of them afforded simultaneous isolation of more than one population. Herein, we describe the simultaneous isolation and characterization of three stem cell populations from the dermis and epidermis of murine skin, namely Epidermal Stem Cells (EpiSCs), Skin-derived Precursors (SKPs) and Mesenchymal Stem Cells (MSCs). The simultaneous isolation was possible through a simple protocol based on culture selection techniques. These cell populations are shown to be capable of generating chondrocytes, adipocytes, osteocytes, terminally differentiated keratinocytes, neurons and glia, rendering this protocol suitable for the isolation of cells for tissue replenishment and cell based therapies. The advantages of this procedure are far-reaching since the skin is not only the largest organ in the body, but also provides an easily accessible source of stem cells for autologous graft.  相似文献   

15.
The Wharton’s Jelly (WJ) of the umbilical cord (UC) is an excellent source of mesenchymal stem cells (MSCs) with a range of potential therapeutic applications. The present study was conducted to demonstrate the efficiency of the protocols used by Biogenea-Cellgenea Ltd. for isolation and expansion of WJ MSCs from donors across Greece. Umbilical cord samples were collected from 599 females following childbirth and processed for WJ MSC isolation. Stem cells were expanded using DMEM-based media and cell counts and overall viability figures derived using Trypan blue exclusion. To investigate the application of isolation and expansion protocols on samples received 1, 2, 3, 4 and 5 d after their collection, ten fresh samples were processed at these time intervals and evaluated. The cellular yield of most WJ samples was 1.1–5.0?×?106 cells at 21–30 d after processing. As culture time increased, cell counts decreased. Statistical analysis of mean cell counts showed a significant reduction after 21 d. Finally, we demonstrate for the first time that it is possible to obtain satisfactory cell numbers from samples processed 1, 2, 3, 4 and even 5 d after collection. We have derived favourable data on the protocols used at Biogenea-Cellgenea Ltd. to isolate and culture MSCs from the WJ. Protocol choice is crucial when handling large numbers of samples on a daily basis and should be made to ensure the best possible outcome.  相似文献   

16.
Mesenchymal stem cells (MSCs) have a fibroblast-like morphology, multilineage potential, long-term viability and capacity for self-renewal. While several articles describe isolating MSCs from various human tissues, there are no reports of isolating MSCs from human spinal ligaments, and their localization in situ. If MSCs are found in human spinal ligaments, they could be used to investigate hypertrophy or ossification of spinal ligaments. To isolate and characterize MSCs from human spinal ligaments, spinal ligaments were harvested aseptically from eight patients during surgery for lumbar spinal canal stenosis and ossification of the posterior longitudinal ligament. After collagenase digestion, nucleated cells were seeded at an appropriate density to avoid colony-to-colony contact. Cells were cultured in osteogenic, adipogenic or chondrogenic media to evaluate their multilineage differentiation potential. Immunophenotypic analysis of cell surface markers was performed by flow cytometry. Spinal ligaments were processed for immunostaining using MSC-related antibodies. Cells from human spinal ligaments could be extensively expanded with limited senescence. They were able to differentiate into osteogenic, adipogenic or chondrogenic cells. Flow cytometry revealed that their phenotypic characteristics met the minimum criteria of MSCs. Immunohistochemistry revealed the localization of CD90-positive cells in the collagenous matrix of the ligament, and in adjacent small blood vessels. We isolated and expanded MSCs from human spinal ligaments and demonstrated localization of MSCs in spinal ligaments. These cells may play an indispensable role in elucidating the pathogenesis of numerous spinal diseases.  相似文献   

17.
18.

Background  

In vitro cultivated stem cell populations are in general heterogeneous with respect to their expression of differentiation markers. In hematopoietic progenitor populations, this heterogeneity has been shown to regenerate within days from isolated subpopulations defined by high or low marker expression. This kind of plasticity has been suggested to be a fundamental feature of mesenchymal stem cells (MSCs) as well. Here, we study MSC plasticity on the level of individual cells applying a multi-scale computer model that is based on the concept of noise-driven stem cell differentiation.  相似文献   

19.
Celebi B  Mantovani D  Pineault N 《Cytokine》2012,58(3):327-331
Co-culture of Umbilical Cord Blood (UCB) CD34+ cells with irradiated Mesenchymal Stem Cells (MSCs) without contact increase the expansion of Hematopoietic Progenitor Cells (HPC). Neurotrophin-3 (NT-3) and insulin-like growth factor binding protein-2 (IGFBP-2) are two factors whose expressions were significantly elevated in conditioned media derived from irradiated MSCs. To determine whether these factors are partly responsible for the growth promoting potential of MSCs, we investigated their impact on the growth and differentiation of UCB-CD34+ cells. Addition of either factor alone had little impact on cell growth, however both factors synergized together to increase the expansion of total nucleated cells, erythroids, megakaryocytes (Mk) and CD34+ cells. However, in contrast to MSCs they failed to significantly improve the expansion of hematopoietic progenitors. Consistent with the impact of these factors on hematopoietic cells, both synergized to activate ERK1/2 and AKT in primary human UCB cells. In conclusion, the study demonstrates for the first time that a neurotrophin factor can synergize with IGFBP-2 to promote hematopoietic cell expansion.  相似文献   

20.
Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory.Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号