首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A previous study on the evolutionary patterns of Tarentola mauritanica demonstrated that low levels of mitochondrial diversity observed in the European populations relative to nuclear markers were consistent with a selective sweep hypothesis. In order to unravel the mitochondrial evolutionary history in this European population and two other lineages of T. mauritanica (Iberian and North African clades), variation within 22 nearly complete mitogenomes was analyzed. Surprisingly, each clade seems to have a distinct evolutionary history; with both the European and Iberian clades presenting a decrease of polymorphism, which in the former is consistent with departure from neutrality of the mtDNA (positive or background selection), but in the latter seems to be the result of a bottleneck after a population expansion. The pattern exhibited by the North African clade seems to be a consequence of adaptation to certain mtDNA variants by positive selection.  相似文献   

2.
Sexual system is a key determinant of genetic variation and reproductive success, affecting evolution within populations and within clades. Much research in plants has focused on evolutionary transitions away from the most common state of hermaphroditism and toward the rare state of dioecy (separate sexes). Rather than transitions predominantly toward greater sexual differentiation, however, evolution may proceed in the direction of lesser sexual differentiation. We analyzed the macroevolutionary dynamics of sexual system in angiosperm genera that contain both dioecious and nondioecious species. Our phylogenetic analyses encompass a total of 2145 species from 40 genera. Overall, we found little evidence that rates of sexual system transitions are greater in any direction. Counting the number of inferred state changes revealed a mild prevalence of transitions away from hermaphroditism and away from dioecy, toward states of intermediate sexual differentiation. We identify genera in which future studies of sexual system evolution might be especially productive, and we discuss how integrating genetic or population‐level studies of sexual system could improve the power of phylogenetic comparative analyses. Our work adds to the evidence that different selective pressures and constraints act in different groups, helping maintain the variety of sexual systems observed among plants.  相似文献   

3.
BACKGROUND AND AIMS: Species that exhibit among-population variation in breeding system are particularly suitable to study the importance of the ecological context for the stability and evolution of gender polymorphism. Geographical variation in breeding system and sex ratio of Daphne laureola (Thymelaeaceae) was examined and their association with environmental conditions, plant and floral display sizes, and pollination environment in a broad geographic scale was analysed. METHODS: The proportion of female and hermaphrodite individuals in 38 populations within the Iberian Peninsula was scored. Average local temperature and precipitation from these sites were obtained from interpolation models based on 30 years of data. Pollination success was estimated as stigmatic pollen loads, pollen tubes per ovule and the proportion of unfertilized flowers per individual in a sub-set of hermaphroditic and gynodioecious populations. KEY RESULTS: Daphne laureola is predominantly gynodioecious, but hermaphroditic populations were found in northeastern and southwestern regions, characterized by higher temperatures and lower annual precipitation. In the gynodioecious populations, female plants were larger and bore more flowers than hermaphrodites. However, due to their lower pollination success, females did not consistently produce more seeds than hermaphrodites, which tends to negate a seed production advantage in D. laureola females. In the northeastern hermaphroditic populations, plants were smaller and produced 9-13 times fewer flowers than in the other Iberian regions, and thus presumably had a lower level of geitonogamous self-fertilization. However, in a few southern populations hermaphroditism was not associated with small plant size and low flower production. CONCLUSIONS: The findings highlight that different mechanisms, including abiotic conditions and pollinator service, may account for breeding system variation within a species' distribution range and also suggest that geitonogamy may affect plant breeding system evolution.  相似文献   

4.
Meliaceae are a mostly pantropical family in the Sapindales, bearing flowers typically provided with a staminal tube, formed by filaments that are fused partially or totally. Nevertheless, several genera of subfamily Cedreloideae have free stamens, which may be adnate to an androgynophore in some taxa. The fact that the family exhibits a wide diversity of floral and fruit features, as well as of sexual systems and pollination syndromes, presents interesting questions on the evolutionary processes that might have taken place during its history. In this study, we analyzed the distribution of 20 reproductive morphological traits of Meliaceae, upon an available molecular phylogenetic framework, using 31 terminals from the family's two main clades (Cedreloideae and Melioideae), plus six Simaroubaceae taxa as outgroup. We aimed to identify and/or confirm synapomorphies for clades within the family and to develop hypotheses on floral evolution and sexual systems in the group. Our reconstruction suggests that the ancestor of Meliaceae was possibly provided with united stamens and unisexual flowers in dioecious individuals, with a subsequent change to free stamens and monoecy in the ancestor of Cedreloideae. Most characters studied show some degree of homoplasy, but some are unique synapomorphies of clades, such as the haplostemonous androecium. An androgynophore defines the Cedrela‐Toona clade. The comparative approach of our study and the evolutionary hypotheses generated herein reveal several aspects demanding further structural investigation, and possible evolutionary pathways of the reproductive structures along with the lineages' diversification, mostly related to the specialization of sexual systems, floral biology, and dispersal strategies.  相似文献   

5.
To further understand natural variation and local adaptation in the evolution of plant defense, we analyzed polymorphism data of nucleotide-binding site (NBS) sequences of Rhododendron at both the species and population levels. Multiple duplication events were found in NBS sequence evolution in Rhododendron genomes, which resulted in six clades: A–F. Our results of several NBS clade pair comparisons showed significant evolutionary rate changes based on differences in substitution rates between NBS-encoding protein clades (type I functional divergence). Pairwise comparisons of NBS clades further revealed that many amino acids displayed radical biochemical property changes causing a shift in amino acid preferences between NBS-encoding protein clades (type II functional divergence). Such divergent evolution of NBSs is likely a consequence of positive selection related to differentiation of recognition signals in response to different pathogens. Primers specific to clades B and C, which differed in the number of radical amino acid changes causing type II functional divergence and levels of nucleotide diversities, were further used to amplify population clades B and C NBS sequences of Rhododendron formosanum populations. Higher levels of net nucleotide divergences (measured by D a) between R. formosanum populations were found based on NBS sequences of population clade B compared to population clade C, suggesting local adaptation of population clade B NBS sequences. Local adaptation can be further inferred for R. formosanum population clade B NBS sequences because of significant Φ ST based on variation in nonsynonymous substitutions. Furthermore, local adaptation was also suggested by no significant correlation of population pairwise F ST between population clades B and C in R. formosanum.  相似文献   

6.
Reproductive proteins often diverge rapidly between species. This pattern is frequently attributed to postmating sexual selection. Heliconius butterflies offer a good opportunity to examine this hypothesis by contrasting patterns of reproductive protein evolution between clades with divergent mating systems. Pupal-mating Heliconius females typically mate only once, limiting opportunity for postmating sexual selection. In contrast, adult-mating females remate throughout life. Reproductive protein evolution is therefore predicted to be slower and show little evidence of positive selection in the pupal-mating clade. We examined this prediction by sequencing 18 seminal fluid protein genes from a dozen Heliconius species and a related outgroup. Two proteins exhibited dN/dS > 1, implicating positive selection in the rapid evolution of at least a few Heliconius seminal fluid proteins. However, contrary to predictions, the average evolutionary rate of seminal fluid proteins was greater among pupal-mating Heliconius. Based on these results, we suggest that positive selection and relaxed constraint can generate conflicting patterns of reproductive protein evolution between mating systems. As predicted, some loci may show elevated evolutionary rates in promiscuous taxa relative to monandrous taxa resulting from adaptations to postmating sexual selection. However, when monandry is derived (as in Heliconius), the opposite pattern may result from relaxed selective constraints.  相似文献   

7.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

8.
The role of mutations of small versus large effect in adaptive evolution is of considerable interest to evolutionary biologists. The major evolutionary pathways for the origin of dioecy in plants (the gynodioecy and monoecy-paradioecy pathways) are often distinguished by the number of mutations involved and the magnitude of their effects. Here, we investigate the genetic and environmental determinants of sex in Sagittaria latifolia, a species with both monoecious and dioecious populations, and evaluate evidence for the evolution of dioecy via gynodioecy or monoecy-paradioecy. We crossed plants of the two sexual systems to generate F1, F2 and backcross progeny, and grew clones from dioecious populations in low-and high-fertilizer conditions to examine sex inconstancy in females and males. Several lines of evidence implicate two-locus control of the sex phenotypes. In dioecious populations sex is determined by Mendelian segregation of alleles, with males heterozygous at both the male- and female-sterility loci. In monoecious populations, plants are homozygous for alleles dominant to male sterility in females and recessive to female sterility in males. Experimental manipulation of resources revealed sex inconstancy in males but not females. These results are consistent with predictions for the evolution of dioecy via gynodioecy, rather than the expected monoecy-paradioecy pathway, given the ancestral monoecious condition.  相似文献   

9.
Gamete-recognition proteins often evolve rapidly, but it is not known if their divergence occurs within species and corresponds with the evolution of reproductive isolation, or if divergence typically accumulates between already isolated lineages. We examined the evolution of a candidate gamete-recognition protein in several sympatric and allopatric populations of Mytilus blue mussels, species that hybridize in nature. Within a single species, Mytilus galloprovincialis, we found adaptive divergence of Lysin-M7, a sperm acrosomal protein that dissolves the egg vitelline envelope during fertilization. Mytilus galloprovincialis Lysin-M7 alleles group into two distinct clades (termed G and G(D)), and individual alleles in these clades are separated from each other by at least three and up to eleven amino-acid substitutions. Maximum-likelihood estimates of selective pressure (dN/dS =omega) implicate selection in the divergence between M. galloprovincialis Lysin-M7 clades, and within the G(D) clade. Exact tests of population differentiation indicate that the relative frequency of G and G(D) Lysin-M7 alleles differs significantly among M. galloprovincialis populations. Compared with allopatric Mediterranean samples, Lysin-M7 alleles in the G(D) clade are found at elevated frequency in samples from the East Atlantic and California, areas of secondary contact and hybridization between Mytilus species, and Australia, an area of unknown species composition. Adaptive divergence between the alleles most common in allopatry and those found at elevated frequency in samples from sympatry suggests that selection pressures acting in hybridizing populations, likely following Pleistocene secondary contact with M. edulis in the East Atlantic, drove the divergence of Lysin-M7 in M. galloprovincialis.  相似文献   

10.
The objectives of this work were to assess the mtDNA diversity of Bolivian South American camelid (SAC) populations and to shed light on the evolutionary relationships between the Bolivian camelids and other populations of SACs. We have analysed two different mtDNA regions: the complete coding region of the MT‐CYB gene and 513 bp of the D‐loop region. The populations sampled included Bolivian llamas, alpacas and vicunas, and Chilean guanacos. High levels of genetic diversity were observed in the studied populations. In general, MT‐CYB was more variable than D‐loop. On a species level, the vicunas showed the lowest genetic variability, followed by the guanacos, alpacas and llamas. Phylogenetic analyses performed by including additional available mtDNA sequences from the studied species confirmed the existence of the two monophyletic clades previously described by other authors for guanacos (G) and vicunas (V). Significant levels of mtDNA hybridization were found in the domestic species. Our sequence analyses revealed significant sequence divergence within clade G, and some of the Bolivian llamas grouped with the majority of the southern guanacos. This finding supports the existence of more than the one llama domestication centre in South America previously suggested on the basis of archaeozoological evidence. Additionally, analysis of D‐loop sequences revealed two new matrilineal lineages that are distinct from the previously reported G and V clades. The results presented here represent the first report on the population structure and genetic variability of Bolivian camelids and may help to elucidate the complex and dynamic domestication process of SAC populations.  相似文献   

11.
Macrodasyidan gastrotrichs are hermaphrodites with complex reproductive organs that function in sperm transfer and receipt, but homology among the organs of members of different clades remains undetermined, as does a broader understanding of evolutionary trends in the reproductive biology of macrodasyidans. In this study, we investigate the evolution of reproduction in Urodasys, a clade of 15 macrodasyidan species that shows variability in reproductive mode (hermaphroditic and parthenogenetic) and sexual anatomy. We use partial 18S rDNA sequence data from 30 specimens representing five described species, sequence data from one undescribed species in GenBank, and sequence data from a potentially new species found at Capron Shoal, Florida, to gain insight into the phylogeny of the clade and clarify evolutionary trends in reproductive modality. Based on a total of 33 specimens of seven potential species, we found that members of Urodasys can be separated into three clades reflective of different reproductive modalities: Clade I, species with paired male and female gonads but without accessory sexual organs; Clade II, species with a single left testis, paired ova, and accessory organs including a sclerotic stylet; and Clade III, parthenogenetic species without testes or accessory organs. In addition, we find that the potentially new species from Florida can form spermatophores, a condition shared with another species in Clade I. Herein, we describe this novel spermatophore‐bearing species and discuss the significance of spermatophore formation in the genus.  相似文献   

12.
Invasive species are often composed of highly differentiated populations or sibling species distributed across their native ranges. This study analysed patterns of distribution and the evolutionary and demographic histories of populations within the native range of the copepod species complex Eurytemora affinis. Genetic structure was analysed for samples from 17 locations from both the invaded and native ranges in the St Lawrence River drainage basin, using 652 base pairs of the mitochondrial cytochrome oxidase subunit I gene. This study revealed a high degree of heterogeneity in genetic structure and habitat type in the native range, as well as a bias in the sources of invasive populations. Two genetically distinct clades showed a pattern of niche partitioning within the St Lawrence basin. The noninvasive North Atlantic clade primarily occupied the central portion of the St Lawrence Middle Estuary, whereas the invasive Atlantic clade was more prevalent along the margins, in the upstream reaches of the estuary and downstream salt marshes. Habitat partitioning and genetic subdivision was also present within the Atlantic clade. The freshwater populations were genetically more proximate to the Atlantic clade populations in the estuary than to those in the salt marsh, suggesting the estuary as the source of the invasive populations. The freshwater invading populations showed evidence of a modest population bottleneck. Populations from both clades showed genetic signatures of demographic population expansions that preceded the timing of the last glacial maximum, supporting the St Lawrence as a secondary contact zone between the two clades. Additional analyses on physiological and evolutionary properties of populations in the native range, along with analysis of the selection regime within native habitats, might yield insights into the evolutionary potential to invade.  相似文献   

13.
One of the most promising hypotheses for the evolution of sex is that sexual reproduction is advantageous because it increases the rate of adaptive evolution in response to parasites. To investigate this advantage of sex, we compared genetic variation of geminiviruses infecting sexual and asexual populations of Eupatorium (Asteraceae). The infection frequency was 37.5% in the sexual population and 87.8% in the asexual population. The lower infection frequency in the sexual population might be the result of higher genetic diversity of host plants. If geminiviruses have diverged to counter defence systems of genetically variable hosts, genetic diversity of viruses is expected to be higher in sexual host populations than in asexual host populations. To test this expectation, we used single-strand conformation polymorphism (SSCP) analysis to examine genetic diversity of the geminiviruses in a DNA region containing the open-reading frame (ORF) C4 gene, which is known to function as a host range determinant. As predicted, higher genetic diversity of viruses was observed in the sexual population: three SSCP types were found in the asexual population while six types were found in the sexual population. Sequencing of the polymerase chain reaction (PCR) products revealed further genetic diversity. Phylogenetic analysis of the sequences showed that the SSCP types belonged to four different clades. Several SSCP types from the same clade were found in the sexual population, whereas the asexual population included only one SSCP type from each clade. Amino acid replacements of ORF C4 are suggested to be accelerated in the sexual population. This evidence supports the hypothesis that sexual reproduction is advantageous as a defence against epidemic disease.  相似文献   

14.
Conchita Alonso 《Oikos》2003,101(3):505-510
The outcome of plant-animal interactions in dioecious plant species frequently depends on the gender of the plant individuals. It has even been proposed that these interactions could mediate the evolution of plant reproductive systems from hermaphroditism to dioecy. Gynodioecy is the most frequent intermediate stage in this evolutionary process, however, little is known about the relevance of gender dimorphism in plant-animal relationships others than pollination for gynodioecious species. In this study herbivores (Noctuid larvae) were used as subjective referees to detect differences between leaves of female and hermaphrodite Daphne laureola individuals. Larvae collected in the field were allowed to choose between leaves of female and hermaphrodite individuals at both flowering and fruiting period. There was no preference for either of the genders suggesting that the absence of male reproductive function in D. laureola shrubs does not cause dissimilarities in leaf characteristics that can affect herbivores.  相似文献   

15.
In Europe, southern peninsulas served as refugia during cold periods in the Pleistocene, acting both as centres of origin of endemisms and as sources from which formerly glaciated areas were recolonized during interglacial periods. Previous studies have revealed that within the main refugial areas, intraspecific lineages often survived in allopatric refugia. We analysed two mitochondrial markers (nad4, control region, approximately 1.4 kb) in 103 individuals representing the entire distribution of Lissotriton boscai, a newt endemic to the western Iberian Peninsula. We inferred the evolutionary history of the species through phylogenetic, phylogeographic and historical demographic analyses. The results revealed unexpected, deep levels of geographically structured genetic variability. We identified two main evolutionary lineages, each containing three well-supported clades. The first historical split involved populations from central-southwestern coastal Portugal and the ancestor of all the remaining populations around 5.8 million years ago. Both lineages were subsequently fragmented into different population groups between 2.5 and 1.2 million years ago. According to nested clade analysis, at lower hierarchical levels the patterns suggest restricted gene flow with isolation by distance, whereas at higher levels the clades exhibit signatures of contiguous range expansion. Bayesian Skyline Plots show recent bottlenecks, followed by demographic expansions in all lineages. The significant genetic structure found is consistent with long-term survival of populations in allopatric refugia, supporting the 'refugia-within-refugia' scenario for southern European peninsulas. The comparison of our results with other co-distributed species highlights the generality of this hypothesis for the Iberian herpetofauna and suggests that Mediterranean refuges had more relevance for the composition and distribution of present biodiversity patterns than currently acknowledged. We briefly discuss the taxonomic and conservation implications of our results.  相似文献   

16.
Species that contain populations with different reproductive modes offer excellent opportunities to study the transition between such strategies. Salamandra salamandra (Linnaeus, 1758) is one of two species within the Salamandra – Lyciasalamandra clade which displays two reproductive modes simultaneously. Along the S. salamandra distribution, the common reproductive mode is ovoviviparity although the species also has viviparous populations in the northern Iberian Peninsula. The occurrence of viviparity has recently been reported in two small offshore island populations on the Atlantic coast (NW Iberia), which originated after the last glacial period (8000–9000 years ago). In this paper, we analysed ovoviviparous, hybrid and viviparous populations (inland and mainland) from 17 localities across the northern Iberian Peninsula using two mitochondrial markers (Cyt b and COI , c . 1100 bp). Phylogenetic and phylogeographic analyses highly support that viviparity arose as an evolutionary novelty in the S. salamandra island populations and that viviparous populations are therefore not monophyletic. The recent insularity of Atlantic island populations leads us to conclude that the transition from ovoviviparity to viviparity can happen in a very short-time span. Additionally, to determine the likely source of this evolutionary transition, we discuss how ecological pressures could have an effect on the maintenance of the ovoviviparous reproductive mode. Hence, taking into account the results of this study, we propose the consideration of the island populations as an evolutionary unit for conservation purposes.  相似文献   

17.
The mode of inheritance of the male sterility trait is crucial for understanding the evolutionary dynamics of the sexual system gynodioecy, which is the co-occurrence of female and hermaphrodite plants in natural populations. Both cytoplasmic (CMS) and nuclear (restorer) genes are known to be involved. Theoretical models usually assume a limited number of CMS genes with each a single restorer gene, while reality is more complex. In this study, it is shown that in the gynodioecious species Plantago coronopus two new CMS-restorer polymorphisms exist in addition to the two that were already known, which means four CMS-restorer systems at the species level. Furthermore, three CMS types were shown to co-occur within a single population. All new CMS types showed a multilocus system for male fertility restoration, in which both recessive and dominant restorer alleles occur. Our finding of more than two co-occurring CMS-restorer systems each with multiple restorer genes raises the question how this complex of male sterility systems is maintained in natural populations.  相似文献   

18.
濒危植物独花兰的形态变异及其适应意义   总被引:14,自引:1,他引:14  
采用ANOVA和UPGMA等方法对濒危植物独花兰(Changnieniaamoena)分布于庐山、新宁和神农架3个地点的12个自然居群的形态变异进行了研究,探讨其形态多样性水平和地理变异式样及其可能的适应机制。结果表明,庐山居群13个性状的平均观测值均高于新宁和神农架居群。在物种水平上各个性状存在较丰富的变异,变异系数(CV值)为0.02–0.30。尽管同一性状在不同居群中的变异程度较大,但总体而言,花部器官的变异性比营养器官低。单因素方差分析显示3个地区间多个形态性状存在极显著差异(P<0.01);UPGMA聚类分析也表明这3个地区分别形成明显不同的分支。值得注意的是,神农架地区龙门河和关门山两个地点间存在明显的形态分化,而这种形态分化是以传粉者为媒介自然选择的结果。相关性分析显示,营养器官之间、花部器官之间,以及营养器官与花部器官之间均存在较高的相关性。上述结果对进一步了解独花兰的适应机制以及制定科学的保护策略提供了有益的资料。  相似文献   

19.
Gynodioecy is a breeding system in plants where populations consist of hermaphrodites and females. The females result from a genetic mutation which impairs pollen production in hermaphrodite plants. Most previous models for the evolution of gynodioecy do not take into account any spatial detail, which might be expected to play an important role in populations with short range interactions caused by poor or no locomotion.In this article we present a generalised mean-field analysis (which ignores any spatial detail), together with stochastic spatial simulations, to investigate the spatial effect on the evolution of gynodioecy. We show that, in a population of hermaphrodites where male sterility is caused by a dominant allele in a nuclear gene, mean-field calculations greatly underestimate the reproductive advantage females require to become viable under spatial constraints. This suggests that gynodioecy is less likely to evolve in plants with more localised pollination and seed setting. This may have implications for the evolution of dioecy, a breeding system in plants where the population consists of males and females, as gynodioecy is thought to be a route to dioecy. Our results also demonstrate that a lower frequency of females should be expected for gynodioecious populations when interactions are local. This is relevant when comparing the results of breeding experiments with observations of female frequency in the wild.  相似文献   

20.
Variation in pigmentation is common in marine invertebrates, although few studies have shown the existence of genetic differentiation of chromatic forms in these organisms. We studied the genetic structure of a colonial ascidian with populations of different colour morphs in the northwestern Mediterranean. A fragment of the c oxidase subunit 1 (COI) mitochondrial gene was sequenced in seven populations of Pseudodistoma crucigaster belonging to three different colour morphs (orange, yellow and grey). Maximum likelihood analyses showed two well-supported clades separating the orange morph from the yellow-grey morphotypes. Genetic divergence between these clades was 2.12%, and gamma(ST) values between populations of the two clades were high (average 0.936), pointing to genetic isolation. Nested clade and coalescence analyses suggest that a past fragmentation event may explain the phylogeographical origin of these two clades. Non-neutral mtDNA evolution is observed in our data when comparing the two clades, showing a significant excess of nonsynonymous polymorphism within the yellow-grey morphotype using the McDonald-Kreitman test, which is interpreted as further support of reproductive isolation. We conclude that the two clades might represent separate species. We compare the population genetic differentiation found with that estimated for other colonial and solitary ascidian species, and relate it to larval dispersal capabilities and other life-history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号