首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In view of the scarcely available information on the in vivo mutagenic and co-mutagenic activity of nickel, the genotoxic potential of two nickel-compounds, nickel chloride (NiCl(2)) and nickel sulphate (NiSO(4)), was assessed in Drosophila melanogaster by measuring two different genetic endpoints. On the one hand, we used the wing-spot assay, which is based on the principle that the loss of heterozygosity of two suitable recessive markers, multiple wing hairs (mwh) and flare-3 (flr(3)), can lead to the formation of mutant clones in the imaginal disks of larval cells. On the other hand, the in vivo comet assay, which detects single- and double-strand DNA breaks, was also used with larval haemocytes. These cells offer several advantages: they are highly sensitive to genotoxic agents, the sampling and processing methodologies are quite simple and the level of basal DNA damage is relatively low. No significant increases in the frequencies of the three categories of mutant spots (i.e. small single spots, large single spots, and twin spots) were observed in the wing-spot assay; however, NiSO(4) induced significant dose-dependent increases in DNA damage in the comet assay. In addition, the combined treatments with gamma-radiation and NiCl(2) and NiSO(4) showed a slight but significant increase in the frequency of the three categories of mutant spots compared with the frequency induced by gamma-radiation alone, indicating that both nickel compounds have a synergistic interaction. These results support the assumption that both nickel compounds could act as co-mutagens interfering with DNA-repair processes and that the in vivo comet assay is a sensitive and effective method for detecting the DNA damage induced by NiSO(4) in haemocytes of D. melanogaster.  相似文献   

2.
Ionizing radiation is an important genotoxic agent. Protecting against this form of toxicant, especially by a dietary component, has several potential applications. In the present study, we have examined the ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, to inhibit radiation-induced DNA damage measured as strand breaks under in vitro, ex vivo and in vivo conditions besides the possible mechanisms behind the observed protection. Our study showed that there was a concentration-dependent inhibition of the disappearance of super-coiled (ccc) form of plasmid pBR322 (in vitro) upon exposure to 50 Gy of gamma-radiation. Presence of 0.5 mM vanillin has a dose-modifying factor (DMF) of 6.75 for 50% inactivation of ccc form. Exposure of human peripheral blood leucocytes (ex vivo) to gamma-radiation causes strand breaks in the cellular DNA, as assessed by comet assay. When leucocytes were exposed to 2 Gy of gamma-radiation there was an increase in parameters of comet assay such as %DNA in tail, tail length, 'tail moment' and 'Olive tail moment'. The presence of 0.5 mM vanillin during irradiation significantly reduced these parameters. Damage to DNA in mouse peripheral blood leucocytes after whole-body exposure of mice (in vivo) to gamma-radiation was studied at 1 and 2 h post-irradiation. There was recovery of DNA damage in terms of the above-mentioned parameters at 2 h post-irradiation. This was more than that observed at 1 h. The recovery was more in vanillin treated mice. Hence our studies showed that vanillin offers protection to DNA against radiation-induced damage possibly imparting a role other than modulation of DNA repair. To examine the possible mechanisms of radioprotection, in terms of radiation-derived radicals, we carried out the reaction of vanillin with ABTS*(+) radical spectrophotometrically besides with DNA peroxyl and carbonyl radicals by using pulse radiolysis. Our present investigations show that vanillin has ability to protect against DNA damage in plasmid pBR322, human and mouse peripheral blood leucocytes and splenic lymphocytes besides enhancing survival in splenic lymphocytes against gamma-radiation, and that the possible mechanism may involve scavenging of radicals generated during radiation, apart from modulation of DNA repair observed earlier.  相似文献   

3.
Wu K  Jiang L  Cao J  Yang G  Geng C  Zhong L 《Mutation research》2007,630(1-2):97-102
Aristolochic acid (AA), extensively used as a traditional herbal medicine, was withdrawn from the market in the last century because it was found to be a potent carcinogen in humans and animals. The aim of this study was to evaluate the genotoxic effect of AA and obtain further insight into whether the nitrative DNA damage can be induced by reactive nitrogen species (RNS), including nitric oxide (NO) and its derivative peroxynitrite (ONOO(-)) using human hepatoma HepG2 cells. To identify the genotoxic effect, the comet assay and micronucleus test (MNT) were performed. In the comet assay, 25-200microM of AA caused a significant increase of DNA migration in a dose-dependent manner. A significant increase of the frequency of micronuclei was found in the range between 12.5 and 50microM in the MNT. The results showed that AA caused DNA and chromosome damages. To elucidate the nitrative DNA damage mechanism, the level of nitrite and 8-hydroxydeoxyguanosine (8-OHdG), which can be generated by ONOO(-), were monitored with the 2,3-diaminonaphthalene (DAN) assay and immunoperoxidase staining, respectively. The results showed that AA causes a significant increase in the levels of NO and formation of 8-OHdG at concentrations >/=50microM. This observation supports the assumption that AA could exert genotoxicity probably via NO and its derivatives at higher concentrations in HepG2 cells.  相似文献   

4.
The topoisomerase II inhibitor etoposide is used routinely to treat a variety of cancers in patients of all ages. As a result of its extensive use in the clinic and its association with secondary malignancies it has become a compound of great interest with regard to its genotoxic activity in vivo. This paper describes a series of assays that were employed to determine the in vivo genotoxicity of etoposide in a murine model system. The alkaline comet assay detected DNA damage in the bone marrow mononuclear compartment over the dose range of 10--100mg/kg and was associated with a large and dose dependent rise in the proportion of cells with severely damaged DNA. In contrast, the bone marrow micronucleus assay was found to be sensitive to genotoxic damage between the doses of 0.1--1mg/kg without any corresponding increases in cytotoxicity. An increase in the mutant frequency was undetectable at the Hprt locus at administered doses of 1 and 10mg/kg of etoposide, however, an increase in the mutant frequency was seen at the Aprt locus at these doses. We conclude that the BMMN assay is a good short-term predictor of the clastogenicity of etoposide at doses that do not result in cytotoxic activity, giving an indication of potential mutagenic effects. Moreover, the detection of mutants at the Aprt locus gives an indication of the potential of etoposide to cause chromosomal mutations that may lead to secondary malignancy.  相似文献   

5.
Genotoxic effects of occupational exposure to lead and cadmium   总被引:20,自引:0,他引:20  
This study was designed to assess genotoxic damage in somatic cells of workers in a Polish battery plant after high-level occupational exposure to lead (Pb) and cadmium (Cd), by use of the following techniques: the micronucleus (MN) assay, combined with in situ fluorescence hybridization (FISH) with pan-centromeric probes, analysis of sister chromatid exchanges (SCEs), and the comet assay. Blood samples from 44 workers exposed to lead, 22 exposed to cadmium, and 52 unexposed persons were used for SCE and MN analysis with 5'-bromodeoxyuridine (BrdU) or cytokinesis block, respectively. In parallel, the comet assay was performed with blood samples from the same persons for detection of DNA damage, including single-strand breaks (SSB) and alkali-labile sites (ALS). In workers exposed mostly to lead, blood Pb concentrations ranged from 282 to 655 microg/l, while the range in the controls was from 17 to 180 microg/l. Cd concentration in lead-exposed workers fell in the same range as for the controls. In workers exposed mainly to cadmium, blood Cd levels varied from 5.4 to 30.8 microg/l, with respective values for controls within the range of 0.2-5.7 microg/l. Pb concentrations were similar as for the controls. The incidence of MN in peripheral lymphocytes from workers exposed to Pb and Cd was over twice as high as in the controls (P<0.01). Using a combination of conventional scoring of MN and FISH with pan-centromeric probes, we assessed that this increase may have been due to clastogenic as well as aneugenic effects. In Cd- and Pb-exposed workers, the frequency of SCEs as well as the incidence of leukocytes with DNA fragmentation in lymphocytes were slightly, but significantly increased ( P<0.05) as compared with controls. After a 3h incubation of the cells to allow for DNA repair, a clear decrease was found in the level of DNA damage in the controls as well as in the exposed workers. No significant influence of smoking on genotoxic damage could be detected in metal-exposed cohorts. Our findings indicate that lead and cadmium induce clastogenic as well as aneugenic effects in peripheral lymphocytes, indicating a potential health risk for working populations with significant exposures to these heavy metals.  相似文献   

6.
Genotoxic effects of lead (0-20μM) were investigated in whole-plant roots of Vicia faba L., grown hydroponically under controlled conditions. Lead-induced DNA damage in V. faba roots was evaluated by use of the comet assay, which allowed the detection of DNA strand-breakage and with the V. faba micronucleus test, which revealed chromosome aberrations. The results clearly indicate that lead induced DNA fragmentation in a dose-dependant manner with a maximum effect at 10μM. In addition, at this concentration, DNA damage time-dependently increased until 12h. Then, a decrease in DNA damages was recorded. The significant induction of micronucleus formation also reinforced the genotoxic character of this metal. Direct interaction of lead with DNA was also evaluated with the a-cellular comet assay. The data showed that DNA breakages were not associated with a direct effect of lead on DNA. In order to investigate the relationship between lead genotoxicity and oxidative stress, V. faba were exposed to lead in the presence or absence of the antioxidant Vitamin E, or the NADPH-oxidase inhibitor dephenylene iodonium (DPI). The total inhibition of the genotoxic effects of lead (DNA breakage and micronucleus formation) by these compounds reveals the major role of reactive oxygen species (ROS) in the genotoxicity of lead. These results highlight, for the first time in vivo and in whole-plant roots, the relationship between ROS, DNA strand-breaks and chromosome aberrations induced by lead.  相似文献   

7.
This work is part of a wider eco-toxicological study proposed to evaluate the biological impact of contaminants along the whole course of the river Nile, Egypt. Here we present data on the presence of DNA strand-breaks and apoptotic cells assessed by use of comet and diffusion assays in erythrocytes of Nile tilapia (Oreochromis niloticus niloticus) and African catfish (Clarias gariepinus). The results showed high degrees of DNA damage and increased frequencies of apoptotic nuclei in blood of fish collected from downstream compared with those sampled from upstream river Nile. Qualitative analysis revealed a shift in the frequency of DNA-damage classes towards higher damage levels correlating with the increasing pollution gradient. The degree of DNA damage measured by use of comet assay and diffusion assay exhibited seasonal variations. Both fish species showed significant increases in DNA damage during the summer. The results of our study indicated that the alkaline comet assay seems to be a useful technique for in situ genotoxic monitoring. At the same time the diffusion assay is sensitive enough to detect low frequencies of apoptotic nuclei. The results reveal species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared with the African catfish. Based on the outcome of the comet and diffusion assays, it can be concluded that the water quality of the river Nile with respect to the presence of genotoxic compounds needs to be improved, especially in its estuaries. As far as we know this is the first time that the comet and diffusion assays are used for genotoxic monitoring of the river Nile.  相似文献   

8.
Male Fischer-344 rats were exposed to formaldehyde (FA) by inhalation for 4 weeks (6 h/day, 5 days/week). Groups of six rats each were exposed to the target concentrations of 0, 0.5, 1, 2, 6, 10 and 15 ppm. Potential genotoxic effects in the lung were investigated as part of a comprehensive study on local and systemic toxic and genotoxic effects. Broncho-alveolar lavage (BAL) cells were obtained by lung lavage with physiological saline and counted. From one half of the cells, slides for the micronucleus test (MNT) were prepared by cytocentrifugation; with the other half, the comet assay was performed. DNA migration in the comet assay was measured both directly and after irradiation of the cells with 2 Gy gamma-radiation. The latter modification of the comet assay was included to increase its sensitivity for the detection of DNA-protein cross-links (DPX). For the comet assay, four slides were analysed from each cell sample, two without and two with irradiation. From each slide, 50 randomly selected cells were measured by image analysis and tail intensity (% tail DNA) and tail moment were evaluated. The frequency of micronucleated BAL cells was determined in acridine orange-stained slides by analysing 2000 cells per animal. FA did not induce any significant effect in any of the genotoxicity tests performed. It can be concluded that inhalation of FA in a 28 days study with FA concentrations up to 15 ppm does not lead to genotoxic effects in BAL cells of rats. Because detection of DPX by the comet assay is a very sensitive biomarker of FA exposure of cells, our results suggest that there is no genetically relevant exposure of the lung after FA inhalation. The results of our inhalation study, which was performed under GLP conditions, call into question the biological significance of previously reported genotoxic effects in the lung of rats after FA inhalation.  相似文献   

9.
Aristolochic acid (AA), extensively used as a traditional herbal medicine, was withdrawn from the market in the last century because it was found to be a potent carcinogen in humans and animals. The aim of this study was to evaluate the genotoxic effect of AA and obtain further insight into whether the nitrative DNA damage can be induced by reactive nitrogen species (RNS), including nitric oxide (NO) and its derivative peroxynitrite (ONOO) using human hepatoma HepG2 cells. To identify the genotoxic effect, the comet assay and micronucleus test (MNT) were performed. In the comet assay, 25–200 μM of AA caused a significant increase of DNA migration in a dose-dependent manner. A significant increase of the frequency of micronuclei was found in the range between 12.5 and 50 μM in the MNT. The results showed that AA caused DNA and chromosome damages. To elucidate the nitrative DNA damage mechanism, the level of nitrite and 8-hydroxydeoxyguanosine (8-OHdG), which can be generated by ONOO, were monitored with the 2,3-diaminonaphthalene (DAN) assay and immunoperoxidase staining, respectively. The results showed that AA causes a significant increase in the levels of NO and formation of 8-OHdG at concentrations ≥50 μM. This observation supports the assumption that AA could exert genotoxicity probably via NO and its derivatives at higher concentrations in HepG2 cells.  相似文献   

10.
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified.Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents.  相似文献   

11.
Hoffmann H  Speit G 《Mutation research》2005,581(1-2):105-114
The comet assay (single-cell gel electrophoresis, SCG) is being increasingly used in human biomonitoring for the detection of genotoxic exposures. Cigarette smoking is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds. Therefore, smoking should represent a relevant mutagenic exposure and lead to genotoxic effects in exposed cells. However, our previous investigations as well as several other published studies on human biomonitoring failed to show an effect of smoking on DNA migration in the comet assay, while some other studies did indicate such an effect. Although many factors can contribute to the generation of discrepant results in such studies, clear effects should be obtained after high exposure. We therefore performed a comparative study with healthy male heavy smokers (>20 cigarettes per day) and non-smokers (n=12 in each group). We measured the baseline comet assay effects in fresh whole blood samples and isolated lymphocytes. In addition, the amount of 'formamidopyrimidine DNA-glycosylase (FPG)-sensitive sites' was determined by a combination of the standard comet assay with the bacterial FPG protein. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline DNA damage was comparatively analysed. Duplicate slides from each sample were processed and analysed separately. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. Finally, to compare the comet assay results with another genetic endpoint, all blood samples were investigated in parallel by the micronucleus test (MNT). Baseline and gamma radiation-induced micronucleus frequencies were determined. None of these approaches revealed a significant difference between heavy smokers and non-smokers with regard to a genotoxic effect in peripheral blood cells.  相似文献   

12.
Due to our lifestyle and the environment we live in, we are constantly confronted with genotoxic or potentially genotoxic compounds. These toxins can cause DNA damage to our cells, leading to an increase in mutations. Sometimes such mutations could give rise to cancer in somatic cells. However, when germ cells are affected, then the damage could also have an effect on the next and successive generations. A rapid, sensitive and reliable method to detect DNA damage and assess the integrity of the genome within single cells is that of the comet or single-cell gel electrophoresis assay. The present communication gives an overview of the use of the comet assay utilising sperm or testicular cells in reproductive toxicology. This includes consideration of damage assessed by protocol modification, cryopreservation vs the use of fresh sperm, viability and statistics. It further focuses on in vivo and in vitro comet assay studies with sperm and a comparison of this assay with other assays measuring germ cell genotoxicity. As most of the de novo structural aberrations occur in sperm and spermatogenesis is functional from puberty to old age, whereas female germ cells are more complicated to obtain, the examination of male germ cells seems to be an easier and logical choice for research and testing in reproductive toxicology. In addition, the importance of such an assay for the paternal impact of genetic damage in offspring is undisputed. As there is a growing interest in the evaluation of genotoxins in male germ cells, the comet assay allows in vitro and in vivo assessments of various environmental and lifestyle genotoxins to be reliably determined.  相似文献   

13.
The new dipalladium complex [Pd(2)(mu-mtpo-N(3),N(4))(2)(phen)(2)](NO(3))(2) (where phen=1,10-phenantroline; Hmtpo=5,7-dihydro-7-oxo-5-methyl[1,2,4]triazolopyrimidine), (Pd(2)-Hmtpo, or complex I), interacts effectively with DNA plasmid (pBS), as studied by circular dichroism spectroscopy (CD), causing large helix distortions, altering the direction of the main DNA helix axis and producing unwinding of the DNA double helix. DNA damage induced by complex I was highly significant at 2.81 microM (ovarian carcinoma TG cell line), as assessed by comet assay, a dose at which all treated nuclei showed more than 30% DNA migration to the comet tail. DNA damage effect is a consequence of genotoxicity and not a false positive response caused by cytotoxicity. In vitro cytotoxic assay on the two human tumor cell lines TG and BT-20 (breast carcinoma), shows that doses of 0.47, 1.41 and 2.81 microM produce significant antiproliferative effects after 4 days of treatment compared with control. Complex I was highly cytotoxic at 2.81 microM causing an inhibition of viable cells of 65.5%. Cisplatin (cis-DDP) exhibits lower cytotoxic activity in TG cells than dipalladium complex (a cisplatin dose of 6.67 microM inhibits 30.3%) and does not cause migration of DNA to comet tail.  相似文献   

14.
Different variants of the comet assay were used to study the genotoxic and cytotoxic properties of the following eight compounds: chloral hydrate, colchicine, hydroquinone, DL-menthol, mitomycin C, sodium iodoacetate, thimerosal and valinomycin. Colchicine, mitomycin C, sodium iodoacetate and thimerosal induced genotoxic effects. The other compounds were found to be inactive. The compounds were tested in the standard comet assay as well as in the all cell comet assay (recovery of floating cells after treatment), designed in our laboratory for adherently-growing cells. This latter procedure proved to be more adequate for the assessment of the cytotoxicity for some of the compounds tested (hydroquinone, DL-menthol, thimerosal, valinomycin). Colchicine was positive in the standard comet assay (3h treatment) and in the all cell comet assay (24h treatment). Sodium iodoacetate and thimerosal were positive in the standard and/or the all cell comet assay. Chloral hydrate, hydroquinone, sodium iodoacetate, mitomycin C and thimerosal were also tested in the modified comet assay using lysed cells. Mitomycin C and thimerosal showed effects in this assay, whereas sodium iodoacetate was inactive. This indicates that it does not induce direct DNA damage. Compounds that are known or suspected to form DNA-DNA cross-links or DNA-protein cross-links (chloral hydrate, hydroquinone, mitomycin C and thimerosal) were checked for their ability to reduce ethyl methanesulfonate (EMS)-induced DNA damage. This mode of action could be demonstrated for mitomycin C only.  相似文献   

15.
To study possible genotoxic effects of occupational exposure to vanadium pentoxide, we determined DNA strand breaks (with alkaline comet assay), 8-hydroxy-2'deoxyguanosine (8-OHdG) and the frequency of sister chromatid exchange (SCE) in whole blood leukocytes or lymphocytes of 49 male workers employed in a vanadium factory in comparison to 12 non-exposed controls. In addition, vanadate has been tested in vitro to induce DNA strand breaks in whole blood cells, isolated lymphocytes and cultured human fibroblasts of healthy donors at concentrations comparable to the observed levels of vanadium in vivo. To investigate the impact of vanadate on the repair of damaged DNA, co-exposure to UV or bleomycin was used in fibroblasts, and DNA migration in the alkaline and neutral comet assay was determined. Although, exposed workers showed a significant vanadium uptake (serum: median 5.38microg/l, range 2.18-46.35microg/l) no increase in cytogenetic effects or oxidative DNA damage in leukocytes could be demonstrated. This was consistent with the observation that in vitro exposure of whole blood leukocytes and lymphocytes to vanadate caused no significant changes in DNA strand breaks below concentrations of 1microM (50microg/l). In contrast, vanadate clearly induced DNA fragmentation in cultured fibroblasts at relevant concentrations. Combined exposure of fibroblasts to vanadate/UV or vanadate/bleomycin resulted in non-repairable DNA double strand breaks (DSBs) as seen in the neutral comet assay. We conclude that exposure of human fibroblasts to vanadate effectively causes DNA strand breaks, and co-exposure of cells to other genotoxic agents may result in persistent DNA damage.  相似文献   

16.
The comet assay in eight mouse organs: results with 24 azo compounds   总被引:6,自引:0,他引:6  
The genotoxicity of 24 azo compounds selected from IARC (International Agency for Research on Cancer) groups 2A, 2B, and 3 were determined by the comet (alkaline single cell gel electrophoresis, SCG) assay in eight mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8, and 24 h after treatment. For the 17 azo compounds, the assay was positive in at least one organ; (1) 14 and 12 azo compounds induced DNA damage in the colon and liver, respectively, (2) the genotoxic effect of most of them was greatest in the colon, and (3) there were high positive responses in the gastrointestinal organs, but those organs are not targets for carcinogenesis. One possible explanation for this discrepancy is that the assay detects DNA damage induced shortly after administration of a relatively high dose, while carcinogenicity is detected after long treatment with relatively low doses. The metabolic enzymes may become saturated following high doses and the rates and pathways of metabolic activation and detoxification may differ following high single doses vs. low long-term doses. Furthermore, considering that spontaneous colon tumors are very rare in rats and mice, the ability to detect tumorigenic effects in the colon of those animals might be lower than the ability to detect genotoxic events in the comet assay. The in vivo comet assay, which has advantage of reflecting test chemical absorption, distribution, and excretion as well as metabolism, should be effective for estimating the risk posed by azo dyes to humans in spite of the difference in dosage regimen.  相似文献   

17.
Detection of DNA damage in haemocytes of zebra mussel using comet assay   总被引:18,自引:0,他引:18  
The aim of the study was to use the comet assay on haemocytes of freshwater mussel, Dreissena polymorpha Pallas, for detection of possible DNA damage after exposure to pentachlorophenol (PCP) and to evaluate the potential application of the comet assay on mussel haemocytes for genotoxicity monitoring of freshwater environment. Zebra mussels were exposed for seven days to different concentrations (10, 80, 100, 150 microg/l) of PCP and in the river Sava downstream from Zagreb municipal wastewater outlet. Significant increase in DNA damage was observed after exposure to PCP at doses of 80 microg/l and higher and after in situ exposure in the river Sava as well. This study confirmed that the comet assay applied on zebra mussel haemocytes may be a useful tool in determining the potential genotoxicity of water pollutants.  相似文献   

18.
The genotoxic potential of two oxidizing compounds, potassium bromate and potassium superoxide, was comparatively tested in various genotoxicity tests with V79 Chinese hamster cells. Both substances clearly induced cytotoxicity, chromosome aberrations and increased DNA migration in the alkaline comet assay. Using a modified comet assay protocol with FPG protein, a DNA repair enzyme which specifically nicks DNA at sites of 8-oxoguanines and formamidopyrimidines, we detected oxidative DNA base damage only after potassium bromate treatment. HPLC analysis also revealed significantly increased levels of 8-oxodeoxyguanosine after potassium bromate treatment but not after potassium superoxide treatment. Furthermore, potassium bromate clearly induced gene mutations at the HPRT locus while potassium superoxide only had a small effect on HPRT mutant frequencies. Molecular analysis of potassium bromate-induced mutations indicated a high portion of deletion mutations. Three out of four point mutations were G to T transversions which typically arise after replication of 8-oxoguanine. Our results suggest that the two oxidizing compounds induce specific patterns of genotoxic effects that reflect the types of DNA alterations induced by different reactive oxygen species (ROS).  相似文献   

19.
The in vitro genotoxicity of imazalil and thiabendazole fungicides and the insecticide chlorpyrifos, compounds used in Costa Rican banana plantations, was evaluated with the single-cell gel electrophoresis technique (comet assay). The comet assay is a simple, rapid and low cost technique for quantification of DNA damage. This assay detects DNA single-strand breaks and alkali-labile sites in individual cells. The effects were analyzed by using human lymphocytes exposed to doses of 0, 25, 50, 75 and 100 microg/ml of each pesticide for 30 min at 37 degrees C. The cells were embedded in agarose, lysed, subjected to alkaline electrophoresis (pH >13) for 20 min at 25V, neutralized and dehydrated to be stained with a fluorescent dye and later comets visualization with the epifluorescence microscope. Chlorpyrifos and imazalil induced significant DNA damage in a dose-dependent manner. Chlorpyrifos was the major inductor of DNA breaks. These results indicate that both are genotoxic compounds in vitro. Thiabendazole fungicide did not induced DNA damage using the comet assay for all concentrations tested.  相似文献   

20.

Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC10–IC30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号