首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both alpha-tubulin and beta-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.  相似文献   

2.
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.  相似文献   

3.
Oncoprotein18/stathmin (Op18) is a regulator of microtubule (MT) dynamics that binds tubulin heterodimers and destabilizes MTs by promoting catastrophes (i.e., transitions from growing to shrinking MTs). Here, we have performed a deletion analysis to mechanistically dissect Op18 with respect to (a) modulation of tubulin GTP hydrolysis and exchange, (b) tubulin binding in vitro, and (c) tubulin association and MT-regulating activities in intact cells. The data reveal distinct types of region-specific Op18 modulation of tubulin GTP metabolism, namely inhibition of nucleotide exchange and stimulation or inhibition of GTP hydrolysis. These regulatory activities are mediated via two-site cooperative binding to tubulin by multiple nonessential physically separated regions of Op18. In vitro analysis revealed that NH(2)- and COOH-terminal truncations of Op18 have opposite effects on the rates of tubulin GTP hydrolysis. Transfection of human leukemia cells with these two types of mutants result in similar decrease of MT content, which in both cases appeared independent of a simple tubulin sequestering mechanism. However, the NH(2)- and COOH-terminal-truncated Op18 mutants regulate MTs by distinct mechanisms as evidenced by morphological analysis of microinjected newt lung cells. Hence, mutant analysis shows that Op18 has the potential to regulate tubulin/MTs by more than one specific mechanism.  相似文献   

4.
The Op18/stathmin family of microtubule regulators includes the ubiquitous cytosolic Op18/stathmin (Op18) and the neuronal, primarily Golgi-associated proteins SCG10 and RB3, which all form ternary complexes with two head-to-tail-aligned tubulin heterodimers. To understand the physiological significance of previously observed differences in ternary complex stability, we have fused each of the heterodimer-binding regions of these three proteins with the CD2 cell surface protein to generate confined plasma membrane localization of the resulting CD2 chimeras. Herein, we show that, in contrast to constitutively active CD2-Op18-tetraA, both the CD2-SCG10 and CD2-RB3 chimeras sequestered tubulin at the plasma membrane, which results in >35% reduction of cytosolic tubulin heterodimer levels and consequent delayed formation of mitotic spindles. However, all three CD2 chimeras, including the tubulin sequestration-incompetent CD2-Op18-tetraA, destabilize interphase microtubules. Given that microtubules are in extensive contact with the plasma membrane during interphase, but not during mitosis, these findings indicate that Op18-like proteins have the potential to destabilize microtubules by both sequestration and direct interaction with microtubules. However, the differences in tubulin binding observed in cells also indicate conceptual differences between the functions of low-abundance neural family members, which will accumulate tubulin at specific cellular compartments, and the abundant cytosolic Op18 protein, which will not.  相似文献   

5.
Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18→E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.  相似文献   

6.
Oncoprotein 18/stathmin (Op18) has been identified recently as a protein that destabilizes microtubules, but the mechanism of destabilization is currently controversial. Based on in vitro microtubule assembly assays, evidence has been presented supporting conflicting destabilization models of either tubulin sequestration or promotion of microtubule catastrophes. We found that Op18 can destabilize microtubules by both of these mechanisms and that these activities can be dissociated by changing pH. At pH 6.8, Op18 slowed microtubule elongation and increased catastrophes at both plus and minus ends, consistent with a tubulin-sequestering activity. In contrast, at pH 7.5, Op18 promoted microtubule catastrophes, particularly at plus ends, with little effect on elongation rates at either microtubule end. Dissociation of tubulin-sequestering and catastrophe-promoting activities of Op18 was further demonstrated by analysis of truncated Op18 derivatives. Lack of a C-terminal region of Op18 (aa 100–147) resulted in a truncated protein that lost sequestering activity at pH 6.8 but retained catastrophe-promoting activity. In contrast, lack of an N-terminal region of Op18 (aa 5–25) resulted in a truncated protein that still sequestered tubulin at pH 6.8 but was unable to promote catastrophes at pH 7.5. At pH 6.8, both the full length and the N-terminal–truncated Op18 bound tubulin, whereas truncation at the C-terminus resulted in a pronounced decrease in tubulin binding. Based on these results, and a previous study documenting a pH-dependent change in binding affinity between Op18 and tubulin, it is likely that tubulin sequestering observed at lower pH resulted from the relatively tight interaction between Op18 and tubulin and that this tight binding requires the C-terminus of Op18; however, under conditions in which Op18 binds weakly to tubulin (pH 7.5), Op18 stimulated catastrophes without altering tubulin subunit association or dissociation rates, and Op18 did not depolymerize microtubules capped with guanylyl (α, β)-methylene diphosphonate–tubulin subunits. We hypothesize that weak binding between Op18 and tubulin results in free Op18, which is available to interact with microtubule ends and thereby promote catastrophes by a mechanism that likely involves GTP hydrolysis.  相似文献   

7.
Oncoprotein 18/stathmin (Op18) is a recently identified phosphorylation-responsive regulator of the microtubule (MT) system. It was originally proposed that Op18 specifically regulates dynamic properties of MTs by associating with tubulin, but it has subsequently been proposed that Op18 acts simply by sequestering of tubulin heterodimers. We have dissected the mechanistic action of Op18 by generation of two distinct classes of mutants. One class has interruptions of the heptad repeats of a potential coiled-coil region of Op18, and the other involves substitution at all four phosphorylation sites with negatively charged Glu residues. Both types of mutation result in Op18 proteins with a limited decrease in tubulin complex formation. However, the MT-destabilizing activities of the coiled-coil mutants are more severely reduced in transfected leukemia cells than those of the Glu-substituted Op18 derivative, providing evidence for tubulin-directed regulatory activities distinct from tubulin complex formation. Analysis of Op18-mediated regulation of tubulin GTPase activity and taxol-promoted tubulin polymerization showed that while wild-type and Glu-substituted Op18 derivatives are active, the coiled-coil mutants are essentially inactive. This suggests that Op18-tubulin contact involves structural motifs that deliver a signal of regulatory importance to the MT system.  相似文献   

8.
Protein phosphorylation represents a ubiquitous control mechanism in living cells. The structural prerequisites and consequences of this important post-translational modification, however, are poorly understood. Oncoprotein 18/stathmin (Op18) is a globally disordered phosphoprotein that is involved in the regulation of the microtubule (MT) filament system. Here we document that phosphorylation of Ser63, which is located within a helix initiation site in Op18, disrupts the transiently formed amphipathic helix. The phosphoryl group reduces tubulin binding 10-fold and suppresses the MT polymerization inhibition activity of Op18’s C-terminal domain. Op18 represents an example where phosphorylation occurs within a regular secondary structural element. Together, our findings have implications for the prediction of phosphorylation sites and give insights into the molecular behavior of a globally disordered protein.  相似文献   

9.
Op18/stathmin (Op18) is a phosphorylation-regulated microtubule destabilizer that is frequently overexpressed in tumors. The importance of Op18 in malignancy was recently suggested by identification of a somatic Q18-->E mutation of Op18 in an adenocarcinoma. We addressed the functional consequences of aberrant Op18 expression in leukemias by analyzing the cell cycle of K562 cells either depleted of Op18 by expression of interfering hairpin RNA or induced to express wild-type or Q18E substituted Op18. We show here that although Op18 depletion increases microtubule density during interphase, the density of mitotic spindles is essentially unaltered and cells divide normally. This is consistent with phosphorylation-inactivation of Op18 during mitosis. Overexpression of wild-type Op18 results in aneugenic activities, manifest as aberrant mitosis, polyploidization, and chromosome loss. One particularly significant finding was that the aneugenic activity of Op18 was dramatically increased by the Q18-->E mutation. The hyperactivity of mutant Op18 is apparent in its unphosphorylated state, and this mutation also suppresses phosphorylation-inactivation of the microtubule-destabilizing activity of Op18 without any apparent effect on its phosphorylation status. Thus, although Op18 is dispensable for mitosis, the hyperactive Q18-->E mutant, or overexpressed wild-type Op18, exerts aneugenic effects that are likely to contribute to chromosomal instability in tumors.  相似文献   

10.
11.
Regulation of Op18 during spindle assembly in Xenopus egg extracts   总被引:5,自引:0,他引:5  
Oncoprotein 18 (Op18) is a microtubule-destabilizing protein that is negatively regulated by phosphorylation. To evaluate the role of the three Op18 phosphorylation sites in Xenopus (Ser 16, 25, and 39), we added wild-type Op18, a nonphosphorylatable triple Ser to Ala mutant (Op18-AAA), and to mimic phosphorylation, a triple Ser to Glu mutant (Op18-EEE) to egg extracts and monitored spindle assembly. Op18-AAA dramatically decreased microtubule length and density, while Op18-EEE did not significantly affect spindle microtubules. Affinity chromatography with these proteins revealed that the microtubule-destabilizing activity correlated with the ability of Op18 to bind tubulin. Since hyperphosphorylation of Op18 is observed upon addition of mitotic chromatin to extracts, we reasoned that chromatin-associated proteins might play a role in Op18 regulation. We have performed a preliminary characterization of the chromatin proteins recruited to DNA beads, and identified the Xenopus polo-like kinase Plx1 as a chromatin-associated kinase that regulates Op18 phosphorylation. Depletion of Plx1 inhibits chromatin-induced Op18 hyperphosphorylation and spindle assembly in extracts. Therefore, Plx1 may promote microtubule stabilization and spindle assembly by inhibiting Op18.  相似文献   

12.
Oncoprotein 18 (Op18, also termed p19, 19K, metablastin, stathmin, and prosolin) is a recently identified regulator of microtubule (MT) dynamics. Op18 is a target for both cell cycle and cell surface receptor-coupled kinase systems, and phosphorylation of Op18 on specific combinations of sites has been shown to switch off its MT-destabilizing activity. Here we show that induced expression of the catalytic subunit of cAMP-dependent protein kinase (PKA) results in a dramatic increase in cellular MT polymer content concomitant with phosphorylation and partial degradation of Op18. That PKA may regulate the MT system by downregulation of Op18 activity was evaluated by a genetic system allowing conditional co-expression of PKA and a series of kinase target site–deficient mutants of Op18. The results show that phosphorylation of Op18 on two specific sites, Ser-16 and Ser-63, is necessary and sufficient for PKA to switch off Op18 activity in intact cells. The regulatory importance of dual phosphorylation on Ser-16 and Ser-63 of Op18 was reproduced by in vitro assays. These results suggest a simple model where PKA phosphorylation downregulates the MT-destabilizing activity of Op18, which in turn promotes increased tubulin polymerization. Hence, the present study shows that Op18 has the potential to regulate the MT system in response to external signals such as cAMP-linked agonists.  相似文献   

13.
Oncoprotein 18/stathmin (Op18), a regulator of microtubule dynamics, was recombinantly expressed and its structure and function analysed. We report that Op18 by itself can fold into a flexible and extended alpha-helix, which is in equilibrium with a less ordered structure. In complex with tubulin, however, all except the last seven C-terminal residues of Op18 are tightly bound to tubulin. Digital image analysis of Op18:tubulin electron micrographs revealed that the complex consists of two longitudinally aligned alpha/beta-tubulin heterodimers. The appearance of the complex was that of a kinked protofilament-like structure with a flat and a ribbed side. Deletion mapping of Op18 further demonstrated that (i) the function of the N-terminal part of the molecule is to 'cap' tubulin subunits to ensure the specificity of the complex and (ii) the complete C-terminal alpha-helical domain of Op18 is necessary and sufficient for stable Op18:tubulin complex formation. Together, our results suggest that besides sequestering tubulin, the structural features of Op18 enable the protein specifically to recognize microtubule ends to trigger catastrophes.  相似文献   

14.
Stathmin is a microtubule-destabilizing protein ubiquitously expressed in vertebrates and highly expressed in many cancers. In several cell types, stathmin regulates the partitioning of tubulin between unassembled and polymer forms, but the mechanism responsible for partitioning has not been determined. We examined stathmin function in two cell systems: mouse embryonic fibroblasts (MEFs) isolated from embryos +/+, +/−, and −/− for the stathmin gene and porcine kidney epithelial (LLCPK) cells expressing stathmin-cyan fluorescent protein (CFP) or injected with stathmin protein. In MEFs, the relative amount of stathmin corresponded to genotype, where cells heterozygous for stathmin expressed half as much stathmin mRNA and protein as wild-type cells. Reduction or loss of stathmin resulted in increased microtubule polymer but little change to microtubule dynamics at the cell periphery. Increased stathmin level in LLCPK cells, sufficient to reduce microtubule density, but allowing microtubules to remain at the cell periphery, also did not have a major impact on microtubule dynamics. In contrast, stathmin level had a significant effect on microtubule nucleation rate from centrosomes, where lower stathmin levels increased nucleation and higher stathmin levels reduced nucleation. The stathmin-dependent regulation of nucleation is only active in interphase; overexpression of stathmin-CFP did not impact metaphase microtubule nucleation rate in LLCPK cells and the number of astral microtubules was similar in stathmin +/+ and −/− MEFs. These data support a model in which stathmin functions in interphase to control the partitioning of tubulins between dimer and polymer pools by setting the number of microtubules per cell.  相似文献   

15.
Oncoprotein 18 (Op18; also termed p19, 19K, p18, prosolin, and stathmin) is a regulator of microtubule (MT) dynamics and is phosphorylated by multiple kinase systems on four Ser residues. In addition to cell cycle-regulated phosphorylation, external signals induce phosphorylation of Op18 on Ser-25 by the mitogen-activated protein kinase and on Ser-16 by the Ca2+/calmodulin-dependent kinase IV/Gr (CaMK IV/Gr). Here we show that induced expression of a constitutively active mutant of CaMK IV/Gr results in phosphorylation of Op18 on Ser-16. In parallel, we also observed partial degradation of Op18 and a rapid increase of total cellular MTs. These results suggest a link between CaMK IV/Gr, Op18, and MT dynamics. To explore such a putative link, we optimized a genetic system that allowed conditional coexpression of a series of CaMK IV/Gr and Op18 derivatives. The result shows that CaMK IV/Gr can suppress the MT-regulating activity of Op18 by phosphorylation on Ser-16. In line with these results, by employing a chemical cross-linking protocol, it was shown that phosphorylation of Ser-16 is involved in weakening of the interactions between Op18 and tubulin. Taken together, these data suggest that the mechanism of CaMK IV/Gr-mediated suppression of Op18 activity involves both partial degradation of Op18 and direct modulation of the MT-destabilizing activity of this protein. These results show that Op18 phosphorylation by CaMK IV/Gr may couple alterations of MT dynamics in response to external signals that involve Ca2+.  相似文献   

16.
17.
In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.  相似文献   

18.
Oncoprotein 18 (Op18) is a microtubule regulator that forms a ternary complex with two tubulin heterodimers. Dispersed regions of Op18 are involved in two-site cooperative binding and subsequent modulation of tubulin GTPase activity. Here we have analyzed specific determinants of Op18 that govern both stoichiometry and positive cooperativity in tubulin binding and consequent stimulatory and inhibitory effects on tubulin GTPase activity. The data revealed that the central and C-terminal regions of Op18 contain overlapping binding-motifs contacting both tubulin heterodimers, suggesting that these regions of Op18 are wedged into the previously noted 1-nm gap between the two longitudinally arranged tubulin heterodimers. Both the N- and C-terminal flanks adjacent to the central region are involved in stabilizing the ternary complex, but only the C-terminal flank does so by imposing positive binding cooperativity. Within the C-terminal flank, deletion of a 7-amino acid region attenuated positive binding cooperativity and resulted in a switch from stimulation to inhibition of tubulin GTP hydrolysis. This switch can be explained by attenuated binding cooperativity, because Op18 under these conditions may block longitudinal contact surfaces of single tubulins with consequent interference of tubulin-tubulin interaction-dependent GTP hydrolysis. Together, our results suggest that Op18 links two tubulin heterodimers via longitudinal contact surfaces to form a ternary GTPase productive complex.  相似文献   

19.
Oncoprotein 18 (Op18, also termed p19, p18, prosolin or stathmin) is a cytosolic protein of previously unknown function. Phosphorylation of Op18 is cell cycle regulated by cyclin-dependent kinases (CDKs), and expression of a 'CDK target site-deficient mutant' results in a phenotype indicative of a role for Op18 during mitosis. This phenotype is compatible with the idea that Op18 is a phosphorylation-responsive regulator of microtubule (MT) dynamics. Therefore, in this study, we analyzed MTs in cells induced to express either wild-type or mutated Op18. The results showed that wild-type Op18 and a CDK target site mutant both efficiently elicited rapid depolymerization of MTs. This result contrasts with clear-cut differences in their cell cycle phenotypes. Morphological analysis of MTs explained this apparent discrepancy: while interphase MTs were depolymerized in cells expressing either Op18 derivative, apparently normal mitotic spindles were formed only in cells overexpressing wild-type Op18. This result correlates with our finding that only mutated Op18 causes a block during mitosis. Hence, we conclude that Op18 decreases MT stability and that this activity of Op18 is subject to cell cycle regulation by CDKs.  相似文献   

20.
Heme oxygenase consists of two structurally related isozymes, heme oxygenase-1 and and heme oxygenase-2, each of which cleaves heme to form biliverdin, iron and carbon monoxide. Expression of heme oxygenase-1 is increased or decreased depending on cellular microenvironments, whereas little is known about the regulation of heme oxygenase-2 expression. Here we show that hypoxia (1% oxygen) reduces the expression levels of heme oxygenase-2 mRNA and protein after 48 h of incubation in human cell lines, including Jurkat T-lymphocytes, YN-1 and K562 erythroleukemia, HeLa cervical cancer, and HepG2 hepatoma, as judged by northern blot and western blot analyses. In contrast, the expression level of heme oxygenase-1 mRNA varies under hypoxia, depending on the cell line; it was increased in YN-1 cells, decreased in HeLa and HepG2 cells, and remained undetectable in Jurkat and K562 cells. Moreover, heme oxygenase-1 protein was decreased in YN-1 cells under the conditions used, despite the induction of heme oxygenase-1 mRNA under hypoxia. The heme oxygenase activity was significantly decreased in YN-1, K562 and HepG2 cells after 48 h of hypoxia. To explore the mechanism for the hypoxia-mediated reduction of heme oxygenase-2 expression, we showed that hypoxia shortened the half-life of heme oxygenase-2 mRNA (from 12 h to 6 h) in YN-1 cells, without affecting the half-life of heme oxygenase-1 mRNA (9.5 h). Importantly, the heme contents were increased in YN-1, HepG2 and HeLa cells after 48 h of incubation under hypoxia. Thus, the reduced expression of heme oxygenase-2 may represent an important adaptation to hypoxia in certain cell types, which may contribute to the maintenance of the intracellular heme level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号