首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer disease and familial British dementia are neurodegenerative diseases that are characterized by the presence of numerous amyloid plaques in the brain. These lesions contain fibrillar deposits of the beta-amyloid peptide (Abeta) and the British dementia peptide (ABri), respectively. Both peptides are toxic to cells in culture, and there is increasing evidence that early "soluble oligomers" are the toxic entity rather than mature amyloid fibrils. The molecular mechanisms responsible for this toxicity are not clear, but in the case of Abeta, one prominent hypothesis is that the peptide can induce oxidative damage via the formation of hydrogen peroxide. We have developed a reliable method, employing electron spin resonance spectroscopy in conjunction with the spin-trapping technique, to detect any hydrogen peroxide generated during the incubation of Abeta and other amyloidogenic peptides. Here, we monitored levels of hydrogen peroxide accumulation during different stages of aggregation of Abeta-(1-40) and ABri and found that in both cases it was generated as a short "burst" early on in the aggregation process. Ultrastructural studies with both peptides revealed that structures resembling "soluble oligomers" or "protofibrils" were present during this early phase of hydrogen peroxide formation. Mature amyloid fibrils derived from Abeta-(1-40) did not generate hydrogen peroxide. We conclude that hydrogen peroxide formation during the early stages of protein aggregation may be a common mechanism of cell death in these (and possibly other) neurodegenerative diseases.  相似文献   

2.
Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-beta peptide (Abeta) production via beta and gamma secretases in Alzheimer's Disease (AD), is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Abeta in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE) and neprilysin (NEP). The known association of human acetylcholinesterase (hAChE) with pathological aggregates in AD together with its ability to increase Abeta fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE(575-614)) is an exposed amphiphilic alpha-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR) with high propensity for conversion to non-native (hidden) beta-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE(586-599)) encompassing the CSR region shares homology with Abeta and forms beta-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE beta-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE(586-599), or versus Abeta, differed. Moreover, IDE digestion of T40 triggered the conformational switch from alpha- to beta-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers). Crucially, these CSR species significantly increased Abeta fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation for observations that implicate hAChE in the extent of Abeta deposition in the brain. Furthermore, this process of heterologous amyloid seeding by a proteolytic fragment from another protein may represent a previously underestimated pathological trigger, implying that the abundance of the major amyloidogenic species (Abeta in AD, for example) may not be the only important factor in neurodegeneration.  相似文献   

3.
Alzheimer disease is a neurological disorder that is characterized by the presence of fibrils and oligomers composed of the amyloid beta (Abeta) peptide. In models of Alzheimer disease, overexpression of molecular chaperones, specifically heat shock protein 70 (Hsp70), suppresses phenotypes related to Abeta aggregation. These observations led to the hypothesis that chaperones might interact with Abeta and block self-association. However, although biochemical evidence to support this model has been collected in other neurodegenerative systems, the interaction between chaperones and Abeta has not been similarly explored. Here, we examine the effects of Hsp70/40 and Hsp90 on Abeta aggregation in vitro. We found that recombinant Hsp70/40 and Hsp90 block Abeta self-assembly and that these chaperones are effective at substoichiometric concentrations (approximately 1:50). The anti-aggregation activity of Hsp70 can be inhibited by a nonhydrolyzable nucleotide analog and encouraged by pharmacological stimulation of its ATPase activity. Finally, we were interested in discerning what type of amyloid structures can be acted upon by these chaperones. To address this question, we added Hsp70/40 and Hsp90 to pre-formed oligomers and fibrils. Based on thioflavin T reactivity, the combination of Hsp70/40 and Hsp90 caused structural changes in oligomers but had little effect on fibrils. These results suggest that if these chaperones are present in the same cellular compartment in which Abeta is produced, Hsp70/40 and Hsp90 may suppress the early stages of self-assembly. Thus, these results are consistent with a model in which pharmacological activation of chaperones might have a favorable therapeutic effect on Alzheimer disease.  相似文献   

4.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

5.
Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as prion and Alzheimer's diseases. Highly branched, globular polymers-dendrimers-are novel promising inhibitors of fibril formation. In this study, the effect of polyamidoamine (PAMAM) dendrimers (generations 3rd, 4th, and 5th) on amyloid aggregation of the prion peptide PrP 185-208 and the Alzheimer's peptide Abeta 1-28 was examined. Amyloid fibrils were produced in vitro and their formation was monitored using the dye thioflavin T (ThT). Fluorescence studies were complemented with electron microscopy. The results show that the higher the dendrimer generation, the larger the degree of inhibition of the amyloid aggregation process and the more effective are dendrimers in disrupting the already existing fibrils. A hypothesis on dendrimer-peptide interaction mechanism is presented based on the dendrimers' molecular structure.  相似文献   

6.
The amyloidoses are a heterogeneous group of diseases, which are characterized by the local or systemic deposition of amyloid. At the root of these diseases are changes in protein conformation where normal innocuous proteins transform into insoluble amyloid fibrils and deposit in tissues. The amyloid fibrils of Alzheimer's disease are composed of the Abeta peptide and deposit in the form of senile plaques. Neurodegeneration surrounds the amyloid deposits, indicating that neurotoxic substances are produced during the deposition process. Whether the neurotoxic species is the amyloid fibril or a fibril precursor is a current area of active research. This review focuses on advancements made in elucidating the molecular structures of the Abeta amyloid fibril and alternate aggregation products of the Abeta peptide formed during fibrillogenesis.  相似文献   

7.
Amyloid deposits are proteinaceous extra-cellular aggregates associated with a diverse range of disease states. These deposits are composed predominantly of amyloid fibrils, the unbranched, beta-sheet rich structures that result from the misfolding and subsequent aggregation of many proteins. In addition, amyloid deposits contain a number of non-fibrillar components that interact with amyloid fibrils and are incorporated into the deposits in their native folded state. The influence of a number of the non-fibrillar components in amyloid-related diseases is well established; however, the mechanisms underlying these effects are poorly understood. Here we describe the effect of two of the most important non-fibrillar components, serum amyloid P component and apolipoprotein E, upon the solution behavior of amyloid fibrils in an in vitro model system. Using analytical ultracentrifugation, electron microscopy, and rheological measurements, we demonstrate that these non-fibrillar components cause soluble fibrils to condense into localized fibrillar aggregates with a greatly enhanced local density of fibril entanglements. These results suggest a possible mechanism for the observed role of non-fibrillar components as mediators of amyloid deposition and deposit stability.  相似文献   

8.
Egnaczyk GF  Greis KD  Stimson ER  Maggio JE 《Biochemistry》2001,40(39):11706-11714
The assembly of the beta-amyloid peptide (Abeta) into amyloid fibrils is essential to the pathogenesis of Alzheimer's disease. Detailed structural information about fibrillogenesis has remained elusive due to the highly insoluble, noncrystalline nature of the assembled peptide. X-ray fiber diffraction, infrared spectroscopy, and solid-state NMR studies performed on fibrils composed of Abeta peptides have led to conflicting models of the intermolecular alignment of beta-strands. We demonstrate here the use of photoaffinity cross-linking to determine high-resolution structural constraints on Abeta monomers within amyloid fibrils. A photoreactive Abeta(1-40) ligand was synthesized by substituting L-p-benzoylphenylalanine (Bpa) for phenylalanine at position 4 (Abeta(1-40) F4Bpa). This peptide was incorporated into synthetic amyloid fibrils and irradiated with near-UV light. SDS-PAGE of dissolved fibrils revealed the light-dependent formation of a covalent Abeta dimer. Enzymatic cleavage followed by mass spectrometric analysis demonstrated the presence of a dimer-specific ion at MH(+) = 1825.9, the predicted mass of a fragment composed of the N-terminal Abeta(1-5) F4Bpa tryptic peptide covalently attached to the C-terminal Abeta(29-40) tryptic peptide. MS/MS experiments and further chemical modifications of the cross-linked dimer led to the localization of the photo-cross-link between the ketone of the Bpa4 side chain and the delta-methyl group of the Met35 side chain. The Bpa4-Met35 intermolecular cross-link is consistent with an antiparallel alignment of Abeta peptides within amyloid fibrils.  相似文献   

9.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

10.
Recent studies have suggested that non-fibrillar soluble forms of Abeta peptides possess neurotoxic properties and may therefore play a role in the molecular pathogenesis of Alzheimer's disease. We have identified solution conditions under which two types of soluble oligomers of Abeta40 could be trapped and stabilized for an extended period of time. The first type of oligomers comprises a mixture of dimers/tetramers which are stable at neutral pH and low micromolar concentration, for a period of at least four weeks. The second type of oligomer comprises a narrow distribution of particles that are spherical when examined by electron microscopy and atomic force microscopy. The number average molecular mass of this distribution of particles is 0.94 MDa, and they are are stable at pH 3 for at least four weeks. Circular dichroism studies indicate that the dimers/tetramers possess irregular secondary structure that is not alpha-helix or beta-structure, while the 0.94 MDa particles contain beta-structure. Fluorescence resonance energy transfer experiments indicate that Abeta40 moieties in amyloid fibrils or protofibrils are more similar in structure to those in the 0.94 MDa particles than those in the dimers/tetramers. These findings indicate that soluble oligomeric forms of Abeta peptides can be trapped for extended periods of time, enabling their study by high resolution techniques that would not otherwise be possible.  相似文献   

11.
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid beta-protein (Abeta) in fibrillar form on neuronal cells. However, the role of Abeta fibrils in neuronal dysfunction is highly controversial. This study demonstrates that monosialoganglioside GM1 (GM1) released from damaged neurons catalyzes the formation of Abeta fibrils, the toxicity and the cell affinity of which are much stronger than those of Abeta fibrils formed in phosphate-buffered saline. Abeta-(1-40) was incubated with equimolar GM1 at 37 degrees C. After a lag period of 6-12 h, amyloid fibrils were formed, as confirmed by circular dichroism, thioflavin-T fluorescence, size-exclusion chromatography, and transmission electron microscopy. The fibrils showed significant cytotoxicity against PC12 cells differentiated with nerve growth factor. Trisialoganglioside GT1b also facilitated the fibrillization, although the effect was weaker than that of GM1. Our study suggests an exacerbation mechanism of AD and an importance of polymorphisms in Abeta fibrils during the pathogenesis of the disease.  相似文献   

12.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

13.
Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.  相似文献   

14.
The amyloid peptide (Abeta), derived from the proteolytic cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases, undergoes multistage assemblies to fibrillar depositions in the Alzheimer's brains. Abeta protofibrils were previously identified as an intermediate preceding insoluble fibrils. While characterizing a synthetic Abeta variant named EV40 that has mutations in the first two amino acids (D1E/A2V), we discerned unusual aggregation profiles of this variant. In comparison of the fibrillogenesis and cellular toxicity of EV40 to the wild-type Abeta peptide (Abeta40), we found that Abeta40 formed long fibrillar aggregates while EV40 formed only protofibrillar aggregates under the same in vitro incubation conditions. Cellular toxicity assays indicated that EV40 was slightly more toxic than Abeta40 to human neuroblastoma SHEP cells, rat primary cortical, and hippocampal neurons. Like Abeta40, the neurotoxicity of the protofibrillar EV40 could be partially attributed to apoptosis since multiple caspases such as caspase-9 were activated after SHEP cells were challenged with toxic concentrations of EV40. This suggested that apoptosis-induced neuronal loss might occur before extensive depositions of long amyloid fibrils in AD brains. This study has been the first to show that a mutated Abeta peptide formed only protofibrillar species and mutations of the amyloid peptide at the N-terminal side affect the dynamic amyloid fibrillogenesis. Thus, the identification of EV40 may lead to further understanding of the structural perturbation of Abeta to its fibrillation.  相似文献   

15.
Peptide aggregation in amyloid fibrils is implicated in the pathogenesis of several diseases such as Alzheimer's disease. There is a strong correlation between amyloid fibril formation and a decrease in conformational stability of the native state. Amyloid-beta peptide (Abeta), the aggregating peptide in Alzheimer's disease, is natively unfolded. The deposits found in Alzheimer's disease are composed of Abeta fibrillar aggregates rich in beta-sheet structure. The influence of fluorinated complexes on the secondary structure and fibrillogenesis of Abeta peptide was studied by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). CD spectra show that complexes of polyampholyte and fluorinated dodecanoic acid induce alpha-helix structure in Abeta, but their hydrogenated analogous lead to beta-sheet formation and aggregation. The fluorinated nanoparticles with highly negative zeta potential and hydrophobic fluorinated core have the fundamental characteristics to prevent Abeta fibrillogenesis.  相似文献   

16.
《Biophysical journal》2021,120(20):4536-4546
The aggregation of peptides into amyloid fibrils is associated with several diseases, including Alzheimer’s and Parkinson’s disease. Because hydrophobic interactions often play an important role in amyloid formation, the presence of various hydrophobic or amphiphilic molecules, such as lipids, may influence the aggregation process. We have studied the effect of a fatty acid, linoleic acid, on the fibrillation process of the amyloid-forming model peptide NACore (GAVVTGVTAVA). NACore is a peptide fragment spanning residue 68–78 of the protein α-synuclein involved in Parkinson’s disease. Based primarily on circular dichroism measurements, we found that even a very small amount of linoleic acid can substantially inhibit the fibrillation of NACore. This inhibitory effect manifests itself through a prolongation of the lag phase of the peptide fibrillation. The effect is greatest when the fatty acid is present from the beginning of the process together with the monomeric peptide. Cryogenic transmission electron microscopy revealed the presence of nonfibrillar clusters among NACore fibrils formed in the presence of linoleic acid. We argue that the observed inhibitory effect on fibrillation is due to co-association of peptide oligomers and fatty acid aggregates at the early stage of the process. An important aspect of this mechanism is that it is nonmonomeric peptide structures that associate with the fatty acid aggregates. Similar mechanisms of action could be relevant in amyloid formation occurring in vivo, where the aggregation takes place in a lipid-rich environment.  相似文献   

17.
Fibrillization of amyloid polypeptides is accompanied by formation of reactive oxygen species (ROS), which, in turn, is assumed to further promote amyloid-related pathologies. Different polyphenols, all of which are established antioxidants, cause dissociation of amyloid fibrils. This study addresses the latter, poorly understood process. Specifically, we have investigated the dissociation of Abeta(42) fibrils by six different polyphenols, using electron microscopy and spectrofluorometric analysis. Simultanously, we have monitored the production of ROS using electron spin resonance (ESR) and the commercially available peroxide assay kit. Using the same methods we found that curcumin, one of the most potent destabilizing agents of Abeta(42), induced dissociation of fibrils of other amyloid polypeptides [Abeta(40), Abeta(42)Nle35, islet amyloid polypeptide and a fragment of alpha-synuclein]. When the solution contained traces of transition metal, all the dissociation reactions were accompanied by ROS formation, independent of the presence of a methionine residue. Kinetic studies show that the formation of ROS lags behind dissociation, indicating that if casual relationship exists between these two processes, then ROS formation may be considered a consequence and not a cause of dissociation. These findings open new avenues in amyloid research that will be required to gain further understanding of our results and of their implications.  相似文献   

18.
Visualization and classification of amyloid beta supramolecular assemblies   总被引:1,自引:0,他引:1  
Yagi H  Ban T  Morigaki K  Naiki H  Goto Y 《Biochemistry》2007,46(51):15009-15017
Deposition of amyloid beta (Abeta) fibrils has been suggested to play a central role in Alzheimer's disease. In clarifying the mechanism by which fibrils form and moreover in developing new treatments for amyloidosis, direct observation is important. Focusing on the interactions with surfaces at the early stages, we studied the spontaneous formation of Abeta(1-40) fibrils on quartz slides, monitored by total internal reflection fluorescence microscopy combined with thioflavin T, an amyloid-specific fluorescence dye. Self-assembly of Abeta(1-40), accelerated by a low concentration of sodium dodecyl sulfate, produced various remarkable amyloid assemblies. Densely packed spherulitic structures with radial fibril growth were typically observed. When the packing of fibrils was coarse, extremely long fibrils often protruded from the spherulitic cores. In other cases, a large number of wormlike fibrils were formed. Transmission electron microscopy and atomic force microscopy revealed relatively short and straight fibrillar blocks associated laterally without tight interaction, leading to random-walk-like fibril growth. These results suggest that, during spontaneous fibrillation, the nucleation occurring in contact with surfaces is easily affected by environmental factors, creating various types of nuclei, and hence variations in amyloid morphology. A taxonomy of amyloid supramolecular assemblies will be useful in clarifying the structure-function relationship of amyloid fibrils.  相似文献   

19.
Recent solid-state NMR data (1) demonstrate that Abeta(1)(-)(40) adopts a conformation in amyloid fibrils with two in-register, parallel beta-sheets, connected by a bend structure encompassing residues D(23)VGSNKG(29), with a close contact between the side chains of Asp23 and Lys28. We hypothesized that forming this bend structure might be rate-limiting in fibril formation, as indicated by the lag period typically observed in the kinetics of Abeta(1)(-)(40) fibrillogenesis. We synthesized Abeta(1)(-)(40)-Lactam(D23/K28), a congener Abeta(1)(-)(40) peptide that contains a lactam bridge between the side chains of Asp23 and Lys28. Abeta(1)(-)(40)-Lactam(D23/K28) forms fibrils similar to those formed by Abeta(1)(-)(40). The kinetics of fibrillogenesis, however, occur without the typical lag period, and at a rate approximately 1000-fold greater than is seen with Abeta(1)(-)(40) fibrillogenesis. The strong tendency toward self-association is also shown by size exclusion chromatography in which Abeta(1)(-)(40)-Lactam(D23/K28) forms oligomers even at concentrations of approximately 1-5 microM. Under the same conditions, Abeta(1)(-)(40) shows no detectable oligomers by size exclusion chromatography. Our data suggest that Abeta(1)(-)(40)-Lactam(D23/K28) could bypass an unfavorable folding step in fibrillogenesis, because the lactam linkage "preforms" a bendlike structure in the peptide. Consistent with this view Abeta(1)(-)(40) growth is efficiently nucleated by Abeta(1)(-)(40)-Lactam(D23/K28) fibril seeds.  相似文献   

20.
The existence of several prion strains and their capacity of overcoming species barriers seem to point to a high conformational adaptability of the prion protein. To investigate this structural plasticity, we studied here the aggregation pathways of the human prion peptide PrP82-146, a major component of the Gerstmann-Sträussler-Scheinker amyloid disease.By Fourier transform infrared (FT-IR) spectroscopy, electron microscopy, and atomic force microscopy (AFM), we monitored the time course of PrP82-146 fibril formation. After incubation at 37 °C, the unfolded peptide was found to aggregate into oligomers characterized by intermolecular β-sheet infrared bands. At a critical oligomer concentration, the emergence of a new FT-IR band allowed to detect fibril formation. A different intermolecular β-sheet interaction of the peptides in oligomers and in fibrils is, therefore, detected by FT-IR spectroscopy, which, in addition, suggests a parallel orientation of the cross β-sheet structures of PrP82-146 fibrils. By AFM, a wide distribution of PrP82-146 oligomer volumes—the smallest ones containing from 5 to 30 peptides—was observed. Interestingly, the statistical analysis of AFM data enabled us to detect a quantization in the oligomer height values differing by steps of ∼ 0.5 nm that could reflect an orientation of oligomer β-strands parallel with the sample surface. Different morphologies were also detected for fibrils that displayed high heterogeneity in their twisting periodicity and a complex hierarchical assembly.Thermal aggregation of PrP82-146 was also investigated by FT-IR spectroscopy, which indicated for these aggregates an intermolecular β-sheet interaction different from that observed for oligomers and fibrils. Unexpectedly, random aggregates, induced by solvent evaporation, were found to display a significant α-helical structure as well as several β-sheet components.All these results clearly point to a high plasticity of the PrP82-146 peptide, which was found to be capable of undergoing several aggregation pathways, with end products displaying different secondary structures and intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号