首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The sulfotransferase associated with a microsomal fraction from rat brain was previously shown to transfer sulfate groups from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to peptides derived from the chole cystokinin (CCK) molecule. Three tyrosine-containing dipeptide derivatives, i.e., Cbz-Glu-Tyr, Cbz-Gly-Tyr and Ac-Phe-Tyr are shown here to accept the [35S] sulfate group from [35S] PAPS under the action of this sulfotransferase. The sulfotransferase activity evaluated with either any of these dipeptide derivatives or CCK-8 as acceptors is similarly inhibited by a series of compounds, i.e., lipophilic polycyclic compounds like fluphenazine, tyrosine derivatives like Boc-O-benzyl-tyrosine and phenolsulfotransferase inhibitors like 4,4-di-isothiocyano 2′,2′-disulfonic acid stilbene.  相似文献   

2.
An apparently novel tyrosyl sulfotransferase activity was detected in a crude microsomal fraction from rat cerebral cortex by using 3'-phosphoadenosine 5'-phospho[35S]sulfate [( 35S]PAPS) as the sulfate donor and various cholecystokinin (CCK) fragments or derivatives as acceptors. Among the latter, the shortest substrate was tert-butoxycarbonylaspartyltyrosine (Boc-Asp-Tyr), but the reaction was optimized by increasing the length of the peptide sequence on the C-terminal side up to tert-butoxycarbonylcholecystokinin octapeptide (Boc-CCK-8) as well as by the presence of acidic amino acid residues at the N-terminal side. Peptides with an N-terminal Tyr residue (e.g., CCK-7 or enkephalins) were not sulfated. With Boc-CCK-8 the optimum pH was 5.8, and apparent KM values were 0.14 +/- 0.02 mM for the peptide (0.5 microM PAPS) and 0.12 +/- 0.01 microM for PAPS (0.25 mM Boc-CCK-8). In the presence of 0.2 mM MnCl2 the Vmax of the reaction was enhanced without change of apparent affinities of the two substrates. The possible role of this sulfotransferase activity in posttranslational modification of CCK and other secretory proteins is suggested.  相似文献   

3.
The transfer of [35S] sulfate from [35S]PAPS, by means of PAPS: chondroitin sulfate sulfotransferase, to various chondroitin sulfates, with different degrees of sulfation and molecular weights is reported. Analyses by digestion with chondroitin AC and specific 4- or 6-sulfatases indicate that the sulfation occurs only in position 6 of the non-sulfated N-acetyl galactosamine moiety. The 50-70% desulfated chondroitin 4/6-sulfates are two times better sulfate acceptors than totally desulfated chondroitin, and the affinity of the sulfotransferase increases markedly from the octa-to the deca-saccharide. These results suggest that sulfation increases sharply only after the growing polysaccharide contains about 10 sugar residues, in the early stages of polymerization, and that the sulfation of chondroitin sulfate may be a process in which the addition of some sulfate groups facilitates further sulfation.  相似文献   

4.
The formation of the sulfate donor [35S]3'-phosphoadenosine 5'-phosphosulfate (PAPS) from inorganic [35S]sulfate was studied using a novel assay. The assay was based on the quantitative transfer of radioactivity from [35S]PAPS to beta-naphthol under the action of phenolsulfotransferase activity from rat brain cytosol, with the [35S]beta-naphthyl sulfate formed being isolated by polystyrene bead chromatography. This simple assay was validated by comparison of results with those derived from direct assay of [35S]PAPS isolated by either TLC or ion exchange chromatography. [35S]PAPS formation by a high-speed supernatant of rat cerebral cortex occurred with an optimal pH of approximately 7.6, varied linearly with time and protein concentration, and depended on the presence of Mg2+-ATP. The latter could not be replaced by other nucleotides such as GTP, UTP, or CTP, which at 1-5 mM concentrations inhibited the reaction. Mg2+ could not be replaced by Mn2+, which at micromolar concentrations inhibited the reaction. The apparent Km values of Mg2+-ATP (at 0.1 mM [35S]sulfate) and inorganic sulfate (at 5 mM Mg2+-ATP) were 2.7 and 0.2 mM, respectively. These kinetics parameters corresponded to those reported for purified ATP sulfurylase (EC 2.7.7.4), the enzyme responsible for the first step of PAPS synthesis in liver. The product of its reaction, [35S]adenosine 5'-phosphosulfate (APS), could not be detected after incubations, an observation implying that the action of APS kinase was not rate limiting in cerebral extracts tested under the selected experimental conditions. [35S]PAPS formation was detectable in cytosolic fractions from various brain regions, which displayed only limited differences in synthesizing activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The Asn-linked oligosaccharides on the glycoprotein hormones lutropin (LH) and thyrotropin terminate with the sequence SO4-4GalNAc beta 1-4GlcNAc beta 1-2 Man alpha-. Using a chemically synthesized trisaccharide GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOCH3 (GGnM-MCO), we have developed a sensitive assay for the sulfotransferase responsible for the 4-O-sulfation of the terminal beta-D-GalNAc. GGnM-MCO is incubated with a bovine pituitary membrane extract and [35S]3'-phosphoadenosine 5'-phosphosulfate ([35S]PAPS). The sulfated product [35S]SGGnM-MCO is separated from [35S]PAPS, PAPS degradation products and endogenous sulfated products by a two-step procedure utilizing an Ecteola cellulose column and a Sep-Pak (C18) cartridge. Characterization of the [35S]SGGnM-MCO produced in the assay indicates that sulfate is incorporated exclusively on the 4-position of GalNAc. Linear incorporation of sulfate into GGnM-MCO can be maintained for greater than 10 h. GGnM-4-sulfotransferase has a pH optimum of 7.2, requires the presence of a reducing agent, and is stimulated by, but does not require, divalent cations. Initial velocity studies indicate an apparent Km (Henri-Michaelis-Menten equilibrium constant) for PAPS of 4 microM and for GGnM-MCO of 9 microM. Incorporation of sulfate into the trisaccharide is stimulated 3-fold by the presence of basic proteins including deglycosylated LH. The stimulation by deglycosylated LH suggests that the protein component of glycoproteins that bear oligosaccharides terminating with GalNAc-GlcNAc-Man- may modulate GGnM-4-sulfotransferase.  相似文献   

6.
Heparan sulfate d-glucosaminyl 3-O-sulfotransferases (3-OSTs) catalyze the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 3 of the glucosamine residue of heparan sulfate and heparin. A sixth member of the human 3-OST family, named 3-OST-5, was recently reported (Xia, G., Chen, J., Tiwari, V., Ju, W., Li, J.-P., Malmstrom, A., Shukla, D., and Liu, J. (2002) J. Biol. Chem. 277, 37912-37919). In the present study, we cloned putative catalytic domain of the human 3-OST-5 and expressed it in insect cells as a soluble enzyme. Recombinant 3-OST-5 only exhibited sulfotransferase activity toward heparan sulfate and heparin. When incubated heparan sulfate with [35S]PAPS, the highest incorporation of35S was observed, and digestion of the product with a mixture of heparin lyases yielded two major35S-labeled disaccharides, which were determined as DeltaHexA-GlcN(NS,3S,6S) and DeltaHexA(2S)-GlcN(NS,3S) by further digestion with 2-sulfatase and degradation with mercuric acetate. However, when used heparin as acceptor, we identified a highly sulfated disaccharide unit as a major product. This had a structure of DeltaHexA(2S)-GlcN(NS,3S,6S). Quantitative real-time PCR analysis revealed that 3-OST-5 was highly expressed in fetal brain, followed by adult brain and spinal cord, and at very low or undetectable levels in the other tissues. Finally, we detected a tetrasulfated disaccharide unit in bovine intestinal heparan sulfate. To our knowledge, this is the first report to describe not only the natural occurrence of tetrasulfated disaccharide unit but also the enzymatic formation of this novel structure.  相似文献   

7.
Chick embryo chondrocyte microsomes containing intact Golgi vesicles took up 3'-phosphoadenosine-5'-phospho[35S]sulfate ([35S]PAPS) in a time- and temperature-dependent, substrate-saturable manner. When [35S]PAPS and p-nitrophenyl-N-acetyl-beta-D-galactosaminide (pNP-GalNAc) were added to the incubation in the absence of detergent, the microsomes catalyzed the transfer of sulfate from [35S]PAPS to pNP-GalNAc to form pNP-GalNAc-6-35SO4. The apparent Km values for PAPS in the uptake and the pNP-GalNAc sulfation reactions were 2 X 10(-7) and 2 X 10(-6) M, respectively. The sulfation of pNP-GalNAc by the microsomal preparation was inhibited by detergent. The microsomal fraction also catalyzed the transfer of sulfate from [35S]PAPS to oligosaccharides prepared from chondroitin. However, in contrast to the sulfation of pNP-GalNAc, the rate of sulfation of these oligosaccharides was low in the absence of detergent and was markedly stimulated when detergent was added. Sulfation of pNP-GalNAc by the freeze-thawed microsomes was inhibited when the octasaccharide prepared from chondroitin was present in the reaction mixture. As the PAPS that had been internalized in the microsomal vesicles was consumed in the sulfation of pNP-GalNAc, more [35S]PAPS was taken up and the sulfated pNP-GalNAc was released from the vesicles. These observations suggest that pNP-GalNAc may serve as a model membrane-permeable substrate for study of the 6-sulfo-transferase reaction involved in sulfation of chondroitin sulfate in intact Golgi vesicles.  相似文献   

8.
The spent media of HepG2 human hepatoma cells and 3Y1 rat embryo fibroblasts labeled with [35S]sulfate, upon ultrafiltration, were analyzed by a two-dimensional thin-layer separation procedure. Autoradiographs of the cellulose thin-layer plate revealed the presence of tyramine-O-[35S]sulfate in addition to tyrosine-O-[35S]sulfate in spent medium from human hepatoma cells. In contrast, only tyrosine-O-[35S]sulfate was observed in spent medium of 3Y1 rat fibroblasts. Using adenosine, 3'-phosphate, 5'-phospho[35S]sulfate as the sulfate donor, sulfotransferase(s) present in HepG2 cell homogenate catalyzed the sulfation of tyramine to tyramine-O-[35S]sulfate, but not the sulfation of tyrosine to tyrosine-O-[35S]sulfate. Endogenous aromatic amino acid decarboxylase present in HepG2 homogenate was shown to catalyze the decarboxylation of [3H]tyrosine to form [3H]tyramine while attempts to use it for the decarboxylation of tyrosine-O-sulfate to form tyramine-O-sulfate were unsuccessful. These results suggest that tyramine-O-sulfate may be derived from the de novo sulfation of tyramine, instead of the decarboxylation of tyrosine-O-sulfate.  相似文献   

9.
The kinetics of the forward tyrosyl protein sulfotransferase (TPS) reaction were examined using an assay based on the 35SO4 transfer from 3'-phosphoadenosine 5'-phospho(35S)sulfate [( 35S]PAPS) to tyrosyl residues of the non-sulfated cholecystokinin derivative, BocCCK-8(ns). TPS present in the microsomal membranes from rat cerebral cortex was used for these studies. Initial velocity measurements performed over a wide range of PAPS, BocCCK-8(ns), 3'-PAP and BocCCK-8(s) concentrations, indicated that the reaction follows an ordered mechanistic pathway. The KM value determined for BocCCK-8(ns) was 160 +/- 18 microM, and that for [35S]PAPS was 0.15 +/- 0.03 microM. 3'-Phosphoadenosine 5'-phosphate (3'-PAP) was found to be a product inhibitor with a Ki = 0.30 +/- 0.02 microM. BocCCK-8(s) produced an uncompetitive inhibition pattern on the TPS reaction. Adenosine 5'-phosphosulfate (APS) behaved as a competitive inhibitor versus PAPS with a Ki = 3.0 +/- 0.3 microM. ATP inhibited competitively the reaction when PAPS was the varied substrate with a Ki = 3.6 +/- 0.5 microM. The results of product and substrate inhibition studies and the patterns of dead end inhibition obtained with APS are best fit by an ordered Bi-Bi reaction mechanism where PAPS is the first substrate to bind and 3'-PAP is the last product to be released.  相似文献   

10.
Calf thyroid microsomes were found to contain an enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phospho[35S]sulfate (PAPS) to C-3 of terminal galactose residues in beta 1----4 linkage to GlcNAc. This sulfotransferase is believed to be involved in the biosynthesis of the recently described Gal(3-SO4) capping groups present in the N-linked oligosaccharides of thyroglobulin (Spiro, R.G., and Bhoyroo, V. D. (1988) J. Biol. Chem. 263, 14351-14358). Assays with various native and modified glycopeptides indicated that the enzyme acted optimally on complex-type carbohydrate units in which beta-linked Gal has been uncovered by desulfation or brought into a terminal position by removal of sialyl and/or alpha-galactosyl residues. With fetuin asialoglycopeptides as acceptors (Km = 0.1 mM) the transfer of sulfate from PAPS (Km = 6.3 microM) had a pH optimum of approximately 7.0, required Mn2+ ions (10-50 mM) and was markedly stimulated by Triton X-100 (0.1%) and ATP (2 mM). The same enzyme apparently sulfated free N-acetyllactosamine (LacNAc; Km = 0.69 mM) and its ethyl glycoside, indicating that it had no absolute requirement for a peptide recognition site. Studies with a number of disaccharides related to LacNAc provided information relating to the specifying role of the beta 1----4 galactosyl linkage and the configuration at C-2 of the sugar to which it is attached. Hydrazine-nitrous acid-NaBH4 treatment of the 35S-labeled products from sulfotransferase action on asialoglycopeptides as well as on the ethyl glycoside of LacNAc yielded the same disaccharide, Gal(3-SO4) beta 1----4 anhydromannitol, as is obtained from a similar treatment of thyroglobulin. Subcellular distribution studies indicated that the PAPS:galactose 3-O-sulfotransferase is located in the Golgi compartment which is consistent with the late occurrence of the requisite beta-galactosylation step. It is proposed that in certain tissues the ultimate nature of the capping groups attached to glycoproteins containing terminal Gal beta 1----4GlcNAc sequences could be the result of a competition between this 3-O-sulfotransferase and sialyl- and/or alpha-galactosyltransferases.  相似文献   

11.
3'-Phosphoadenosine 5'-phospho[35S]sulfate [( 35S]PAPS) specific binding properties of rat brain tissue were studied. [35S]PAPS specific binding was optimal at pH 5.8 in either Tris-maleate or potassium phosphate buffers. Association was maximal at low temperature, reaching equilibrium in 20 min. Dissociation was rapid, with a dissociation time of 80 s. Scatchard analysis of [35S]PAPS specific binding was consistent with a single site having a KD of 0.46 +/- 0.06 microM and a Bmax of 20.8 +/- 2.0 pmol/mg of protein. Low concentrations of Triton X-100 (0.025%) were effective in increasing the number of binding sites to a Bmax of 44.5 +/- 4.6 pmol/mg of protein without affecting the affinity. [35S]PAPS specific binding was enriched in crude synaptic membranes (P2) and microsomes (P3). Regional distribution of [35S]PAPS specific binding was quite homogeneous in all brain structures studied. The pharmacological profile of [35S]PAPS specific binding in rat brain microsomes was consistent with a membrane protein having a high selectivity for the 3'-O-phosphoryl group substitution on the ribose moiety. Thus, 3'-phosphoadenosine 5'-phosphate was more potent than 2'-phosphoadenosine 5'-phosphate in competing for [35S]PAPS specific binding. Adenosine 5'-phosphosulfate was a good inhibitor of [35S]PAPS specific binding. ATP and ADP were also good displacers. Dipyridamole, a highly selective marker for adenosine uptake sites, was ineffective. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid, the chloride transporter inhibitor, showed an IC50 of 36 +/- 5.1 microM for inhibition of [35S]PAPS specific binding. 2,6-Dichloro-4-nitrophenol had a low selectivity in competing for the [35S]PAPS binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Tyapochkin E  Cook PF  Chen G 《Biochemistry》2008,47(45):11894-11899
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates biosignaling molecular biological activities and detoxifies hydroxyl-containing xenobiotics. The universal sulfuryl group donor for SULTcatalyzed sulfation is adenosine 3'-phosphate 5'-phosphosulfate (PAPS). The reaction products are a sulfated product and adenosine 3',5'-diphosphate (PAP). Although the kinetics has been reported since the 1980s,SULT-catalyzed reaction mechanisms remain unclear. Human SULT1A1 catalyzes the sulfation of xenobiotic phenols and has very broad substrate specificity. It has been recognized as one of the most important phase II drug-metabolizing enzymes. Understanding the kinetic mechanism of this isoform is important in understanding drug metabolism and xenobiotic detoxification. In this report, we investigated the SULT1A1-catalyzed phenol sulfation mechanism. The SULT1A1-catalyzed reaction was brought to equilibrium by varying substrate (1-naphthol) and PAPS initial concentrations. Equilibrium constants were determined. Two isotopic exchanges at equilibrium ([14C]1-naphthol <=>[14C]1-naphthyl sulfate and[35S]PAPS<=>[35S]1-naphthyl sulfate) were conducted. First-order kinetics, observed for all the is otopic exchange reactions studied over the entire time scale that was monitored, indicates that the system was truly at equilibrium prior to addition of an isotopic pulse. Complete suppression of the 35S isotopic exchange rate was observed with an increase in the levels of 1-naphthol and 1-naphthyl sulfate in a constant ratio,while no suppression of the 14C exchange rate was observed with an increase in the levels of PAPS and PAP in a constant ratio. Data are consistent with a steady state ordered kinetic mechanism with PAPS and PAP binding to the free enzyme.  相似文献   

13.
L-selectin, a leukocyte adhesion molecule, plays a central role in lymphocyte homing to secondary lymphoid tissue and to certain sites of inflammation. Carbohydrate sulfation was implicated in this process, when it was demonstrated that carbohydrate sulfotransferase-mediated sulfation of N-acetylglucosamine (GlcNAc) within sialyl Lewis X of cognate endothelial ligands for L-selectin was an essential modification for L-selectin binding. The recently identified GlcNAc-6-sulfotransferases GlcNAc6ST-1 and -2, which facilitate GlcNAc sulfation by catalyzing the transfer of a sulfonyl group from 3(')-phosphoadenosine 5(')-phosphosulfate (PAPS) to the 6-hydroxy group of the acceptor GlcNAc moiety, contribute to the biosynthesis of the 6-sulfosialyl Lewis X motif. Due to their pivotal role in L-selectin ligand biosynthesis, this enzyme class has recently emerged as an important and relatively unexplored class of potential targets for anti-inflammatory therapy. However, no inhibitors have been reported to date and screening for lead inhibitors has been hampered by the lack of simple assay formats suitable for high-throughput screening. Here, we report the development of a simple homogeneous in vitro sulfotransferase assay using a newly synthesized biotinylated glycoside as a substrate. The assay is based on GlcNAc6ST-2-mediated [35S]sulfate transfer from [35S]PAPS to the biotinylated glycoside and subsequent detection using streptavidin-coated SPA beads. K(m) values with partially purified GlcNAc6ST-2 for PAPS and the biotinylated glycoside were estimated to be 8.4 and 34.5 microM, respectively. The sulfotransferase reaction could be inhibited by 3('),5(')-ADP with an IC(50) of 2.1 microM. The assay can be operated in 384-well format; is characterized by a high signal-to-noise ratio, low variation, and excellent Z factors; and is highly suitable for high-throughput screening.  相似文献   

14.
3'-Phosphoadenosine-5'-phospho[35S]sulfate (PAP35S) was prepared by incubating ATP and carrier-free H2(35)SO4 with a 100,000g supernatant fraction prepared from chick embryo chondrocytes. The product was partially purified by paper electrophoresis and mixed with unlabeled PAPS to give a solution of PAP35S with a specific activity and a concentration approximating those required for the desired metabolic studies. The product was analyzed by high-performance liquid chromatography on an anion-exchange column to determine the proportion of the 35SO4 cpm and A260 material found in the PAPS and other contaminating nucleotides. The PAP35S was purified further by preparative high-performance liquid chromatography. The exact specific activity of the PAP35S was then determined by using this PAP35S preparation as the SO4 donor in a sulfotransferase reaction using a microsomal preparation from the chick embryo chondrocytes as the enzyme and an 3H-labeled oligosaccharide as the SO4 acceptor. The sulfated oligosaccharide was then isolated and the number of 3H and 35SO4 counts per minute in this product were used to calculate the specific activity of the donor. The features of this generally useful approach for preparing PAP35S of any desired specific activity and concentration are discussed.  相似文献   

15.
Abstract : Biosynthesis of the neuroactive steroids pregnenolone sulfate (▵5PS) and dehydroepiandrosterone sulfate (DHEAS) is catalyzed by the enzyme hydroxysteroid sulfotransferase (HST), which transfers the sulfonate moiety from 3'-phosphoadenosine 5' -phosphosulfate (PAPS) on thye 3-hydroxy site of steroids. Although high concentrations of ▵5PS and DHEAS have been detected in the rat brain, the anatomical localization of HST in the CNS has never been determined. Using an antiserum against rat liver HST, we have investigated the distribution of HST-like Immunoreactivity in the CNS of the frog Rana ridibunda. Two populations of HST-immunoreactive neurons were observed in the hypothalamus, and several bundless of positive nerves fibers were visualized in the telencephalon and diencephalon. lncubation of frog brain homogenates with [35S]PAPS and [3H] pregnenolone yielded the formation of several 3H, 35S-labeled compounds, including ▵5PS and testosterone sulfate. When [3] dehydroepiandrosterone and [35S]PAPS were used as precursors, one of the 3H, 35S-labeled metabolities coeluted with DHEAS. Neosynthesis of [3H]▵5PS and [3H]DHEAS was reduced significantly by 2,4-dichloro-6-nitrophenol, a specific inhibitor of sulfotransferases. The present study provides the first immunocytochemical mapping of HSt in the brain. Our data also demonstrate for the first time that biopsynthesis of the highly poten neuroactive steroids ▵5PS and DHEAS occurs in the CNS of nonmammalian vertebrates.  相似文献   

16.
Calf brain 3'-phosphoadenosine 5'-phosphosulfate (PAPS):proteoheparan sulfate (PHS) N-sulfotransferase activity is solubilized by extracting salt-washed microsomes with 1% Cutscum. A protocol is described for the partial purification of the sulfotransferase activity utilizing: (1) diethylaminoethyl (DEAE)-Sephacel, (2) heparin-Sepharose CL-6B, and (3) 3',5'-ADP-agarose as chromatographic supports. Sulfotransferase activity was followed by using 3'-phosphoadenosine 5'-phospho[35S]sulfate and endogenous acceptors in heat-inactivated microsomes as exogenous substrates. Two chromatographically distinct fractions (ST1 and ST2) of sulfotransferase activity are resolved on DEAE-Sephacel. Both sulfotransferase activities have been partially purified and characterized. An apparent purification of the two N-sulfotransferase fractions of 22- to 29-fold, relative to the microsomal activity, is achieved by this procedure. Since ST1 appears to represent approximately 24% of the total microsomal activity, a purification of 89-fold has been estimated for this fraction. Neither sulfotransferase activity was stimulated by MnCl2, MgCl2, or CaCl2 added at 10 mM, nor inhibited by the presence of 10 mM EDTA. ST1 and ST2 are optimally active at pH 7.5-8. Apparent Km values for PAPS of 2.3 microM and 0.9 microM have been determined for ST1 and ST2, respectively. ST1 exhibits N-sulfotransferase activity primarily and is inhibited by phosphatidylserine whereas the ST2 fraction contains a mixture of N- and O-sulfotransferase activity and is stimulated by phosphatidylserine, phosphatidylcholine, and lysophosphatidylcholine. The detection of two chromatographically distinct sulfotransferase activities raises the possibility that N-sulfation of proteoheparan sulfates could be catalyzed by more than one enzyme, and that N-sulfation and O-sulfation of proteoglycans are catalyzed by separate enzymes in nervous tissue.  相似文献   

17.
The synthesis and quantitation of the sulfate donor 3'-phosphoadenosine 5'-phospho[35S]sulfate (PAP35S), prepared from inorganic [35S]sulfate and ATP, were studied. An enzymatic transfer method based upon the quantitative transfer of [35S]sulfate from PAP35S to 2-naphthol and 4-methylumbelliferone by the action of phenolsulfotransferase activity from rat brain cytosol was also developed. The 2-naphthyl[35S]sulfate or 35S-methylumbelliferone sulfate formed was isolated by polystyrene bead chromatography. This method allows the detection of between 0.1 pmol and 1 nmol/ml of PAP35S. PAP35S of high specific activity (75 Ci/mmol) was prepared by incubating ATP and carrier-free Na2 35SO4 with a 100,000g supernatant fraction from rat spleen. The product was purified by ion-exchange chromatography. The specific activity and purity of PAP35S were estimated by examining the ratios of Km values for PAP35S of the tyrosyl protein sulfotransferase present in microsomes from rat cerebral cortex. The advantage and applications of these methods for the detection of femtomole amounts, and the synthesis of large scale quantities of PAP35S with high specific activity are discussed.  相似文献   

18.
A method is described for the assay of sulfotransferases, which transfer sulfate from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to glycosaminoglycan acceptors. Following the sulfation reactions, the [35S]sulfate-labeled products are precipitated and then separated from a sulfate donor ([35S]PAPS) and its degradation products by a paper disk method, and then the radioactivity remaining on the paper disk is subsequently determined by liquid scintillation counting. The rapidity and simplicity of the method are advantageous for multiple assays and have allowed us to establish assay conditions for serum sulfotransferases which introduce sulfate at position 6 of the internal N-acetylgalactosamine units of chondroitin, position 2 (amino group) of the glucosamine units of heparan sulfate and sugar units of keratan sulfate, respectively. The assay method will be applicable with modification to the assay of other glycosaminoglycan sulfotransferases and glycoprotein sulfotransferases.  相似文献   

19.
Transport of heparan sulfate into the nuclei of hepatocytes   总被引:13,自引:0,他引:13  
Monolayer cultures of a rat hepatocyte cell line shown previously to accumulate a nuclear pool of free heparan sulfate chains that are enriched in sulfated glucuronic acid (GlcA) residues (Fedarko, N.S., and Conrad, H.E., (1986) J. Cell Biol. 587-599) were incubated with 35SO4(2-), and the rate of appearance of heparan [35S]sulfate in the nuclei was measured. Heparan [35S]sulfate began to accumulate in the nuclei 2 h after the administration of 35SO4(2-) to the cells and reached a steady state level after 20 h. Heparan [35S]sulfate was lost from the nuclei of prelabeled cells with a t1/2 of 8 h. Chloroquine did not inhibit the transport of heparan sulfate into the nucleus, but increased the t1/2 for the exit of heparan sulfate from the nucleus to 20 h and led to a doubling of the steady state level of nuclear heparan sulfate. Heparan [35S]sulfate which was obtained from the medium or from the cell matrix of a labeled culture and which contained only low levels of GlcA-2-SO4 residues was incubated with cultures of unlabeled cells, and the uptake of the exogenous heparan [35S]sulfate was studied. At 37 degrees C the cells took up proteoheparan [35S]sulfate and transported about 10% of the internalized heparan [35S]sulfate into the nucleus, where it appeared as free chains. The heparan [35S]sulfate isolated from the nucleus was enriched in GlcA-2-SO4 residues, whereas the heparan [35S]sulfate remaining in the rest of the intracellular pool showed a corresponding depletion in GlcA-2-SO4 residues. At 16 degrees C, where endocytosed materials do not enter the lysosomes, the cells also transported exogenous proteoheparan [35S]sulfate to the nucleus with similar processing. Thus, the metabolism of exogenous heparan sulfate by hepatocytes follows the same pathway observed in continuously labeled cells and does not involve lysosomal processing of the internalized heparan sulfate.  相似文献   

20.
Previous work with the bovine phenol sulfotransferase (bSULT1A1, EC ) demonstrated inhibition by CoA that was competitive with respect to the sulfuryl donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) (Leach, M., Cameron, E., Fite, N., Stassinopoulos, J., Palmreuter, N., and Beckmann, J. D. (1999) Biochem. Biophys. Res. Commun. 261, 815-819). Here we report that long chain acyl-CoAs are more potent inhibitors of bSULT1A1 and also of human dopamine sulfotransferase (SULT1A3) when compared with unesterified CoA and short chain-length acyl-CoAs. A complex pattern of inhibition was revealed by systematic variation of palmitoyl-CoA, PAPS, and 7-hydroxycoumarin, the acceptor substrate. Convex plots of apparent K(m)/V(max) versus [palmitoyl-CoA] were adequately modeled using an ordered rapid equilibrium scheme with PAPS as the leading substrate and by accounting for the possible binding of two equivalents of inhibitor to the dimeric enzyme. Interestingly, the first K(i) of 2-3 microm was followed by a second K(i) of only 0.01-0.05 microm, suggesting that positive subunit cooperativity enhances binding of long chain acyl-CoAs to this sulfotransferase. Simultaneous interaction of palmitoyl-CoA with both the nucleotide and phenol binding sites is suggested by two experiments. First, the acyl-CoA displaced 7-hydroxycoumarin from the highly fluorescent bSULT1A1.PAP.7-HC complex in a cooperative manner. Second, palmitoyl-CoA prevented the quenching of bSULT1A1 fluorescence observed with pentachlorophenol. Finally, titrations of bSULT1A1-pentachlorophenol complex with palmitoyl-CoA caused the return of protein fluorescence, and the binding of palmitoyl-CoA was highly cooperative (Hill constant of 1.9). Overall, these results suggest a model of sulfotransferase inhibition in which the 3'-phosphoadenosine-5'-diphosphate moiety of CoA docks to the PAPS domain, and the acyl-pantetheine group docks to the hydrophobic phenol binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号