首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Debus  K Weber  M Osborn 《The EMBO journal》1983,2(12):2305-2312
A set of monoclonal antibodies to desmin has been isolated from a fusion of mouse myeloma cells with spleen cells from mice immunized with purified porcine desmin. Eleven group I antibodies recognized desmin in the immune blot, and using defined desmin fragments the epitope has been tentatively assigned as lying between residues 325 and 372. When cell lines were tested in immunofluorescence only the human line RD and hamster BHK-21 were positive. When tissue sections were used, skeletal, cardiac, visceral and some vascular smooth muscle cells were positive. Thus, the group I antibodies appear specific for desmin and do not recognize other intermediate filament proteins. Group II monoclonals recognized not only desmin in the immune blot but also other polypeptides. The epitope of this class is located between residues 70 and 280. In immunofluorescence on cell lines and tissues, the staining patterns of group II antibodies were more complicated and demonstrate that not only other intermediate filament proteins but also additional antigenic determinants are being recognized. The group I antibodies stain, as expected from their desmin specificity, rat and human rhabdomyosarcomas and thus appear to be useful reagents in pathology.  相似文献   

2.
Association of spectrin with desmin intermediate filaments   总被引:5,自引:0,他引:5  
The association of erythrocyte spectrin with desmin filaments was investigated using two in vitro assays. The ability of spectrin to promote the interaction of desmin filaments with membranes was investigated by electron microscopy of desmin filament-erythrocyte inside-out vesicle preparations. Desmin filaments bound to erythrocyte inside-out vesicles in a spectrin-dependent manner, demonstrating that spectrin is capable of mediating the association of desmin filaments with plasma membranes. A quantitative sedimentation assay was used to demonstrate the direct association of spectrin with desmin filaments in vitro. When increasing concentrations of spectrin were incubated with desmin filaments, spectrin cosedimented with desmin filaments in a concentration-dependent manner. At near saturation the spectrin:desmin molar ratio in the sedimented complex was 1:230. Our results suggest that, in addition to its well characterized associations with actin, spectrin functions to mediate the association of intermediate filaments with plasma membranes. It might be that nonerythrocyte spectrins share erythrocyte spectrin's ability to bind to intermediate filaments and function in nonerythroid cells to promote the interaction of intermediate filaments with actin filaments and/or the plasma membrane.  相似文献   

3.
Immunocytochemistry of eye lens cells from transgenic mice coexpressing desmin and vimentin reveals that the transgenic desmin expression is not uniform. In the same lens, some epithelial and fiber cells overexpress desmin, while in others the desmin gene seems to be silent. Conversely, the endogenous vimentin is always expressed. The concomitant expression of vimentin and desmin results in the assembly of hybrid intermediate filaments (IFs). Moreover, the overexpression of the transgene generates pleomorphic IF assembly and leads to intermingled filamentous whorls and to accumulation of amorphous desmin. The abnormalities of IF assembly induced by the genetic manipulation are correlated with perturbation of the enucleation process in the lens fibers, changes in cell shape, fiber fusion and extensive internalization of the general plasma membrane and junctional domains. The alterations of lens cells described in this study were observed in all transgenic mice examined. The level of expression of the transgene was paralleled by the degree of damage. Our results indicate that proper expression, assembly and membrane interaction of IFs play an important role in the terminal differentiation of the lenticular epithelium into fiber cells. We anticipate that alterations during these processes may initiate cataract formation.  相似文献   

4.
OBJECTIVE: To evaluate the utility of immunohistochemical stains for desmin in discriminating mesothelial cells from adenocarcinoma in serous fluid cell block preparations. STUDY DESIGN: Cell block preparations from 22 cases (representing 18 patients) that were positive for carcinoma and 5 cases that were negative for malignancy were immunostained with an antibody to desmin. Positive staining was evaluated and scored semiquantitatively in both tumor cells and background mesothelial cells in the malignant cases and mesothelial cells in the negative controls. Staining was evaluated with a score of 0-3 for intensity and 0-5 for distribution. The sum of the two scores was recorded as the total score (TS). RESULTS: Mesothelial cells from all the carcinoma and benign cases stained with desmin (median TS = 5.5, range 4-8), typically strong in intensity and widespread in distribution. Positivity was observed in carcinoma cells in all cases, typically weak and focal (range 2-4). Using a total score of 4 as a cutoff for definitively positive staining, desmin staining was positive in mesothelial cells in 25/25 cases and carcinoma cells in 1/22 cases (P < .0001, Fisher's exact test). Additionally, using the Mann-Whitney ranked sum test on the 20 cases with evaluable mesothelial cells, the medians of the total scores for mesothelial cells (5.5) and carcinoma cells (2.5) were significantly different (P < .0001). CONCLUSION: A total score of > or = 4 was significantly associated with mesothelial cell staining. Use of desmin immunohistochemical staining in cell block preparations may be helpful in distinguishing between mesothelial cells and carcinoma.  相似文献   

5.
Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle.  相似文献   

6.
Four cases of Ewing's sarcoma, three in bone and one from an extraskeletal site, were studied immunohistologically using monospecific antibodies against intermediate filament proteins of keratin, vimentin, desmin and neurofilament types. All cases were also evaluated for the presence of Factor VIII-related antigen (FVIIIR:Ag) and for the binding of Ulex europaeus I lectin (UEA I), both of which are endothelial markers. In all cases the tumor cells contained vimentin but not keratin, desmin or neurofilaments. The tumor cells could not be decorated with either anti-FVIIIR:Ag or UEA I, whereas the vascular endothelium was positive for both markers. The vimentin-positivity indicates a mesenchymal derivation of Ewing's sarcoma, while the lack of endothelial markers argues against the proposed endothelial origin of this tumor.  相似文献   

7.
Desmin and vimentin are two type III intermediate filament (IF) proteins, which can be phosphorylated in vitro by cAMP-dependent kinase (kinase A) and protein kinase C, and the in vitro phosphorylation of these proteins appears to favor the disassembled state. The sites of phosphorylation for desmin and vimentin have been mapped to their amino-terminal headpiece domains; in chicken smooth muscle desmin the most kinase A-reactive residues are ser-29 and ser-35. In this study we have examined the phosphorylation of desmin by the catalytic subunit of kinase A by using anti-peptide antibodies directed against residues 26-36. The antibodies, which we call anti-D26, recognize both native and denatured desmin and can discriminate between intact desmin and those derivatives that do not possess residues 26-36. Pre-incubation of desmin with affinity purified anti-D26 blocks total kinase A catalyzed incorporation of 32P into desmin by 75-80%. When antibody-treated IFs are subjected to phosphorylation, no filament break-down is observed after 3 hours. Thus anti-D26 antibodies block phosphorylation of IF in vitro. We have also explored the role of desmin phosphorylation in skeletal muscle cell differentiation using these antibodies. Quail embryo cells, induced to differentiate along the myogenic pathway by infection with avian SKV retroviruses expressing the ski oncogene, were microinjected with affinity purified anti-D26 at the mononucleated, myoblast stage. By 24 h post-injection, the vast majority of uninjected cells had fused into multinucleated myotubes, but all microinjected cells were arrested in the process of incorporating into myotubes and remained mononucleated. This observation suggests that kinase A phosphorylation-induced dynamic behavior of the desmin/vimentin IF cytoskeleton may be one of the many cytoskeletal restructuring events that must take place during myoblast fusion.  相似文献   

8.
Isolated myocytes of the adult mammalian heart are useful for studying cytoskeletal changes during development of irreversible myocardial injuries. Using monoclonal antibodies we have studied the structural organization of desmin in freshly isolated cardiomyocytes from rat hearts. This preparation consists of approximately 85% calcium tolerant rod shaped cells and 15% contracted "square cells" and "round cells" that were initially injured during separation. Cells were quick-frozen at -196 degrees C without any chemical stabilization, cryosectioned and then further processed for immunofluorescence or immunoelectron microscopy. Freshly isolated rod shaped cells exhibit the specific pattern of interfibrillar desmin organization of striated muscle. Furthermore, high resolution immunogold preparations show that desmin in the rod cells occurs in apposition to the edges of the Z-bands as well as closely associated with the plasmalemma. We could find no evidence for the presence of desmin within the Z-band plaques. This organization of desmin is completely absent in the contracted round cells. Thus, already at advanced stages of square cell development, desmin is almost entirely confined to the outer areas of the central filamentous core. We conclude that during the process of square cell contracture, the filamentous desmin contacts with Z-bands and sarcolemma are broken, leading to the unorganized array of desmin in round cells.  相似文献   

9.
Muscle cells, including human airway smooth muscle cells (HASMCs) express ankyrin repeat protein 1 (Ankrd1), a member of ankyrin repeat protein family. Ankrd1 efficiently interacts with the type III intermediate filament desmin. Our earlier study showed that desmin is an intracellular load-bearing protein that influences airway compliance, lung recoil, and airway contractile responsiveness. These results suggest that Ankrd1 and desmin may play important roles on ASMC homeostasis. Here we show that small interfering (si)RNA-mediated knockdown of the desmin gene in HASMCs, recombinant HASMCs (reHASMCs), up-regulates Ankrd1 expression. Moreover, loss of desmin in HASMCs increases the phosphorylation of Akt, inhibitor of κB kinase (IKK)-α, and inhibitor of κB (IκB)-α proteins, leading to NF-κB activation. Treatment of reHASMCs with Akt, IKKα, IκBα, or NF-κB inhibitor inhibits the loss of desmin-induced Ankrd1 up-regulation, suggesting Akt/NF-κB-mediated Ankrd1 regulation. Transfection of reHASMCs with siRNA specific for p50 or p65 corroborates the NF-κB-mediated Ankrd1 regulation. Luciferase reporter assays show that NF-κB directly binds on Ankrd1 promoter and up-regulates Ankrd1 levels. Overall, our data provide a new link between desmin and Ankrd1 regulation, which may be important for ASMC homeostasis.  相似文献   

10.
Indirect immunofluorescence was used to study the temporal appearance and spatial distribution of desmin during the myogenesis of the embryos of Cynops orientalis. Desmin is undetectable until stage 25. In stage 25 embryo, it can be seen that desmin is restrictively distributed at both ends of columnar cells, near the boundary between two somites and intense in the cells near by the notochord. From stage 26 to stage 30, the amount of desmin is increased and its distribution pattern shows little change (Plate I, Figs. 1-2). At stage 32 desmin can be detected in the cells more distal to the notochord and forms filaments on the inside of the cell membrane parallel to the long axis of the cell (Plate I, Fig. 3 and 5). Desmin filaments extend gradually from the both ends toward the mid-part of the cell (Plate I, Fig. 6 and Plate II, Figs. 7, 11-13). At about stage 40 the whole cell is filled with desmin filaments and the attachment of desmin to Z line can occasionally be detected (Plate II, Fig. 8). Desmin attached to Z line is increased at stage 41 (Plate II, Fig. 9) and at stage 43 most of the desmin is found attached to Z line (Plate II, Fig.10). According to EM observation, Z line structure can be seen in stage 33 embryo (Wang[18]), but desmin remains in the filament form till stage 40. The transference of desmin distribution pattern from filament to Z line occurs somewhat later than the appearance of scattered sarcomeres. The possibility that notochord may be the main factor which influences the spatial localization of desmin was analyzed. The relationship between the transference of desmin from filament to Z line attached form and the quantitative changes of both desmin and sarcomere was discussed.  相似文献   

11.
Assembly of amino-terminally deleted desmin in vimentin-free cells   总被引:13,自引:9,他引:4       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1971-1985
To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin- free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.  相似文献   

12.
Equine satellite cell clone SE-11 and ovine satellite cell clone I(1)were evaluated for expression of myosin heavy chain, myogenin, desmin, and muscle-specific actin over a 240 h period in culture. An enzyme-linked immunoculture assay (ELICA) was capable of detecting these proteins at all time points evaluated. A linear relationship was demonstrated between the natural logarithm of the absorbance values (corrected for cell number) from the ELICA and percent fusion in both SE-11 and I(1)cultures. The r(2)values for SE-11 cultures were: desmin 0.82, muscle actin 0.81, myogenin 0.78, and myosin 0.70. The r(2)values for I(1)cultures were: desmin 0.77, muscle actin 0.72, myogenin 0.70, and myosin 0.61. Our confocal results support the idea that differences exist between species in the differentiation dynamics of satellite cells. Further, these data suggest that the ELICA may be applied to previously conducted experiments, enabling additional data to be obtained with relation to muscle protein expression.  相似文献   

13.
Analysis of specific fragments of vimentin and desmin from 32P-labeled BHK-21 cells indicated that these intermediate-filament subunit proteins are phosphorylated in specific regions or domains. High performance liquid chromatography and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of lysine-specific protease-generated fragments demonstrated that both molecules were phosphorylated in their amino terminal or "head" domains. While this was the predominant site of phosphorylation for vimentin, additional phosphorylated fragments from desmin were observed. Chemical cleavage of [32P]desmin and subsequent examination of the phosphorylated peptides indicated that the major site of desmin phosphorylation was located within the "tail" domain. Analysis of vimentin and desmin from non-mitotic and mitotically selected cells indicated that the increased phosphorylation of intermediate-filament proteins observed during cell division occurs within the amino terminal domains of both molecules. These studies indicate that the increased phosphorylation of filament proteins during mitosis may involve the function of the amino terminal domain. In addition, filament proteins may be phosphorylated in a subunit-protein-specific manner which may reflect subunit-specific functions.  相似文献   

14.
We have studied the expression of the desmin gene, a muscle-specific intermediate filament protein in the granuloma cells of mouse liver infected with Schistosoma mansoni. In situ hybridization using a desmin DNA probe showed that fibroblastic cells in the granuloma strongly expressed desmin mRNAs, while in normal liver these cells did not express this mRNA to a detectable degree. The quantitative analysis of total RNAs demonstrated that the proportion of specific desmin mRNA increased from 14 to 18 weeks after infection and decreased at 20 weeks. The analysis of collagen gene expression indicated that the amount of type III collagen mRNAs was still increasing after 18 weeks from infection; in contrast, the amount of type I collagen mRNAs remained unchanged at that stage. A good correlation was observed between the detection of the specific mRNAs and the detection of both desmin and collagen molecules. Therefore, these data point to a coordinate induction of desmin and collagen gene expression during Schistosomal granuloma formation. They also suggest that the expression of the myofibroblast phenotype involves the induction of both genes.  相似文献   

15.
Using immunoelectron microscopy it is demonstrated that desmin subunits missing their complete carboxy-terminal domain are incapable of homopolymeric filament formation in vivo. Furthermore it is shown that, in vimentin-containing cells, desmin integrates into preexisting vimentin filaments resulting in desmin/vimentin heteropolymers. Removal of the amino-terminal or both nonhelical end domains of desmin increases Triton X-100 solubility of the mutant desmin subunits. Expression of desmin mutants containing deletions in the C-terminal part of the rod in vimentin-free cells results in an increase of the Triton X-100 solubility too. In contrast, if expressed in vimentin-containing cells, these mutant subunits remain in the Triton X-100 insoluble fraction. Deletion of the nonhelical carboxy-terminal domain only has no effect on solubility. In vimentin-free cells, stably expressed desmin subunits missing their amino-terminal domains display a slightly higher turnover rate compared to wild-type desmin. Transiently expressed desmin subunits missing 18 or more carboxy-terminal residues of the rod domain are rapidly degraded in vimentin-free cells. In vimentin-containing cells, turnover rates were much less pronounced. Finally, by using site-directed mutagenesis, we were able to map specific residues important for de novo filament assembly within the amino-terminal domain and in the conserved part at the C-terminus of the alpha-helical domain.  相似文献   

16.
Intercellular junctions which are similar in ultrastructure and protein composition to typical desmosomes have so far only been found in epithelial cells and in heart tissue, specifically in the intercalated disks of cardiac myocytes and at cell boundaries between Purkinje fiber cells. In epithelial cells the cytoplasmic side of desmosomes, the 'desmosomal plaque', represents a specific attachment structure for the anchorage of intermediate filaments (IF) of the cytokeratin type. Cardiac myocytes do not contain cytokeratin filaments. In primary cultures of rat cardiac myocytes, we have examined by immunofluorescence and electron microscopy, using single and double label techniques, whether other types of IF are attached to the desmosomal plaques of the heart. Antibodies to desmoplakin, the major protein of the desmosomal plaque, have been used to label specifically the desmosomal plaques. It is shown that the desmoplakin-containing structures are often associated with IF stained by antibodies to desmin, i.e., the characteristic type of IF present in these cells. Like cytokeratin filaments in epithelial cells, desmin filaments attach laterally to the desmosomal plaque. They also remain attached to these plaques after endocytotic internalization of desmosomal domains by treatment of the cells with EGTA. These desmin filaments do not appear to attach to junctions of the fascia adherens type and to nexuses (gap junctions). These observations show that anchorage at desmosomal plaques is not restricted to IF of the cytokeratin type and that IF composed of either cytokeratin or desmin, specifically attach, in a lateral fashion, to desmoplakin-containing regions of the plasma membrane. We conclude that special domains exist in these two IF proteins that are involved in binding to the desmosomal plaque.  相似文献   

17.
Most mutations of desmin that cause severe autosomal dominant forms of myofibrillar myopathy are point mutations and locate in the central alpha-helical coiled-coil rod domain. Recently, two in-frame deletions of one and three amino acids, respectively, in the alpha-helix have been described and discussed to drastically interfere with the architecture of the desmin dimer and possibly also the formation of tetramers and higher order complexes [Kaminska, A., Strelkov, S.V., Goudeau, B., Olive, M., Dagvadorj, A., Fidzianska, A., Simon-Casteras, M., Shatunov, A., Dalakas, M.C., Ferrer, I., Kwiecinski, H., Vicart, P., Goldfarb, L.G., 2004. Small deletions disturb desmin architecture leading to breakdown of muscle cells and development of skeletal or cardioskeletal myopathy. Hum. Genet. 114, 306-313.]. Therefore, it was proposed that they may poison intermediate filament (IF) assembly. We have now recombinantly synthesized both mutant proteins and subjected them to comprehensive in vitro assembly experiments. While exhibiting assembly defects when analyzed on their own, both one-to-one mixtures of the respective mutant protein with wild type desmin facilitated proper filament formation. Transient transfection studies complemented this fundamental finding by demonstrating that wild type desmin is also rescuing these assembly defects in vivo. In summary, our findings strongly question the previous hypothesis that it is assembly incompetence due to molecular rearrangements caused by the mutations, which triggers the development of disease. As an alternative, we propose that these mutations cause subtle age-dependent structural alterations of desmin IFs that eventually lead to disease.  相似文献   

18.
Heterozygous mutations of the human desmin gene on chromosome 2q35 cause hereditary and sporadic myopathies and cardiomyopathies. The expression of mutant desmin brings about partial disruption of the extra sarcomeric desmin cytoskeleton and abnormal protein aggregation in the sarcoplasm of striated muscle cells. The precise molecular pathways and sequential steps that lead from a desmin gene defect to progressive muscle damage are still unclear. We tested whether mutant desmin changes the biomechanical properties and the intrinsic mechanical stress response of primary cultured myoblasts derived from a patient carrying a heterozygous R350P desmin mutation. Compared to wildtype controls, undifferentiated mutant desmin myoblasts revealed increased cell death and substrate detachment in response to cyclic stretch on flexible membranes. Moreover, magnetic tweezer microrheometry of myoblasts using fibronectin-coated beads showed increased stiffness of diseased cells. Our findings provide the first evidence that altered mechanical properties may contribute to the progressive striated muscle pathology in desminopathies. We postulate that the expression of mutant desmin leads to increased mechanical stiffness, which results in excessive mechanical stress in response to strain and consecutively to increased mechanical vulnerability and damage of muscle cells.  相似文献   

19.
The intermediate filament proteins desmin and vimentin from pregnant and non-pregnant uterine muscle and smooth-muscle cells in culture were analysed using SDS/PAGE. The desmin content in uterine muscle increases dramatically during pregnancy, whereas vimentin remains unchanged or changes very little. When muscle cells are kept in culture, a considerable increase in vimentin content is observed as compared with vimentin in freshly isolated non-pregnant uterine tissue. Our results strengthen the view that vimentin and desmin filaments have independent function and turnover, and point to a predominantly structural role for desmin filaments.  相似文献   

20.
The assembly of intermediate filaments into a cytoplasmic network was studied by microinjecting into the nuclei and cytoplasms of PtK2 cells, plasmids that contained a full length desmin cDNA and an RSV promoter. Immunofluorescence was used to monitor the expression of desmin and its integration into the cells' vimentin intermediate filament network. We found that the expressed desmin co-localized with filaments of vimentin just as it does with fluorescently labelled desmin is microinjected into the cytoplasm of PtK2 cells. As early as two hours after microinjection of the plasmids, small discrete dots and short fragments of desmin could be detected throughout the cytoplasm of the cells. This initial distribution of desmin was superimposed on the filamentous pattern of vimentin in the cells. At 8 hours after microinjection of the plasmids, some of the desmin was present in long filaments that were coincident with vimentin filaments. By 18 hours, most of the desmin was in a filamentous network co-localizing with vimentin. There was no indication that desmin assembly began in the perinuclear region and proceeded toward the cell periphery. In some cells, excessively high levels of desmin were expressed. In these cases, overexpression led to clumping of desmin filaments as well as to an accumulation of diffusely distributed desmin protein in the center of the cells. This effect was apparent at approximately 18 hours after introduction of the plasmid. The native vimentin filaments in such cells were also aggregated around the nucleus, co-localizing with desmin. The microtubule networks in all injected cells appeared normal; microtubules were extended in typical arrays out to the periphery of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号