首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) consists of two polypeptides, 515 and 85 kDa, that are noncovalently associated. A 39-kDa polypeptide, termed the receptor-associated protein (RAP), interacts with the 515-kDa subunit after biosynthesis of these molecules and remains associated on the cell surface. This molecule regulates ligand binding of alpha 2MR/LRP (Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) J. Biol. Chem. 266, 21232-21238). Titration and binding studies indicate that RAP binds to two equivalent binding sites on alpha 2MR/LRP, with a KD of 14 nM. Heterologous ligand displacement experiments demonstrated that RAP completely inhibits the binding of 125I-activated alpha 2M to human fibroblasts and to the purified alpha 2MR/LRP, with a Ki of 23 and 26 nM, respectively. A direct correlation between the degree of binding of RAP to the receptor and the degree of ligand inhibition was observed, indicating that as the RAP binding sites are saturated, alpha 2MR/LRP loses its ability to bind ligands. Thus, the amount of RAP bound to alpha 2MR/LRP dictates the level of receptor activity. A model is proposed in which alpha 2MR/LRP contains multiple ligand binding sites, each regulated by a separate RAP site.  相似文献   

2.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

3.
The mannose receptor (MR) is a heavily glycosylated endocytic receptor that recognizes both mannosylated and sulfated ligands through its C-type lectin domains and cysteine-rich (CR) domain, respectively. Differential binding properties have been described for MR isolated from different sources, and we hypothesized that this could be due to altered glycosylation. Using MR transductants and purified MR, we demonstrate that glycosylation differentially affects both MR lectin activities. MR transductants generated in glycosylation mutant cell lines lacked most mannose internalization activity, but could internalize sulfated glycans. Accordingly, purified MR bearing truncated Man5-GlcNAc2 glycans (Man5 -MR) or non-sialylated complex glycans (SA0-MR) did not bind mannosylated glycans, but could recognize SO4-3-Gal in vitro. Additional studies showed that, although mannose recognition was largely independent of the oligomerization state of the protein, recognition of sulfated carbohydrates was mostly mediated by self-associated MR and that, in SA0-MR, there was a higher proportion of oligomeric MR. These results suggest that self-association could lead to multiple presentation of CR domains and enhanced avidity for sulfated sugars and that non-sialylated MR is predisposed to oligomerize. Therefore, the glycosylation of MR, terminal sialylation in particular, could influence its binding properties at two levels. (i) It is required for mannose recognition; and (ii) it modulates the tendency of MR to self-associate, effectively regulating the avidity of the CR domain for sulfated sugar ligands.  相似文献   

4.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2 MR/LRP) is a large cell-surface glycoprotein consisting of a 515-kDa and an 85-kDa polypeptide; this receptor is thought to be responsible for the binding and endocytosis of activated alpha 2-macroglobulin and apoE-enriched beta-very low density lipoprotein. A similar high molecular weight glycoprotein has been identified as a potential receptor for Pseudomonas exotoxin A (PE). We demonstrate that the alpha 2 MR/LRP and the PE-binding glycoprotein have a similar mobility upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and are immunologically indistinguishable. Furthermore, affinity-purified alpha 2 MR/LRP binds specifically to PE but not to a mutant toxin defective in its ability to bind cells. The 39-kDa receptor-associated protein, which blocks binding of ligands to alpha 2 MR/LRP, also prevents binding and subsequent toxicity of PE for mouse fibroblasts. The concentration of receptor-associated protein that was required to reduce binding and toxicity to 50% was approximately 14 nM, a value virtually identical to the KD measured for the interaction of receptor-associated protein with the purified receptor. Overall, the studies strongly suggest that the alpha 2 MR/LRP is responsible for internalizing PE.  相似文献   

5.
The 39-kDa receptor-associated protein (RAP) binds to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) and inhibits binding of ligands to this receptor. The in vivo function of RAP may be to regulate ligand binding and/or assist in the correct biosynthetic processing or trafficking of the alpha 2MR/LRP. Here we show that RAP binds another putative receptor, the kidney glycoprotein 330 (gp330). Gp330 is a high molecular weight glycoprotein that is structurally similar to both the alpha 2MR/LRP and low density lipoprotein receptor. The ability of RAP to bind to gp330 was demonstrated by ligand blotting and solid phase binding assays, which showed that RAP binds to gp330 with high affinity (Kd = 8 nM). Exploiting the interaction of gp330 and RAP, we purified gp330 by affinity chromatography with a column of RAP coupled to Sepharose. Gp330 preparations obtained by this procedure were notably more homogeneous than those obtained by conventional methods. Immunocytochemical staining of human kidney sections localized RAP to the brush-border epithelium of proximal tubules. The fact that gp330 is also primarily expressed by proximal tubule epithelial cells strengthens the likelihood that the interaction between gp330 and RAP occurs in vivo. The functional significance of RAP binding to gp330 may be to antagonize ligand binding as has been demonstrated for the alpha 2MR/LRP or to assist in the biosynthetic processing and/or trafficking of this receptor.  相似文献   

6.
Grossmann C  Gekle M 《Steroids》2008,73(9-10):973-978
  相似文献   

7.
8.
Phagocytosis of extracellular organisms in the alveolar spaces of the lungs represents the first-line of host defense against pulmonary pathogens. Disruption of this process is likely to interfere with the generation of appropriate specific immune responses, and lead to a delayed or inefficient clearance of the pathogen. Pneumocystis carinii, an opportunistic pathogen in immunodeficient individuals, is cleared from the lung by alveolar macrophages. In the absence of specific anti-Pneumocystis antibodies, phagocytosis is dependent on the non-opsonic macrophage mannose receptor (MR). Recent studies have demonstrated that alveolar macrophage MR activity is downregulated in individuals infected with HIV, and that functional MR is shed from the macrophage cell surface. Here we report that P. carinii enhances the formation of soluble MR by macrophages in vitro. Soluble MR was detected in cell-free alveolar fluid from humans infected with HIV and/or P. carinii, but not in alveolar fluid from healthy controls. Soluble MR was found in association with extracellular clumps of P. carinii in the lungs of mice with P. carinii pneumonia, and was associated with P. carinii organisms purified from these mice. When purified P. carinii organisms were incubated with soluble MR-containing supernatants, they were phagocytosed less readily by alveolar macrophages than were control organisms. Our results suggest that P. carinii organisms enhance the shedding of MR from the surface of alveolar macrophages, and that the resultant soluble MR binds to intra-alveolar organisms, thereby interfering with their non-opsonic uptake via the macrophage cell surface MR.  相似文献   

9.
New developments in corticosteroid receptor research enabled us to perform a highly detailed study on the neuroanatomical topography of MR and GR in the rat hippocampus. Receptor immunocytochemistry was used to map the distribution of GR protein with the help of a monoclonal antibody raised against the purified rat liver GR-hormone complex. Furthermore, in situ hybridization with 35S-labeled RNA probes, which were transcribed from cDNAs complementary to either a fragment of the rat brain MR gene or to the rat liver GR gene, was applied to investigate the localization of MR and GR mRNA in the limbic brain. The pyramidal neurons of cell field Ca1 and CA2 and the granular neurons of the dentate gyrus showed marked GR immunoreactivity (GRir) as well as intense labeling of GR mRNA. The radiolabeled density of GR mRNA in cell fields CA3 and CA4 was considerable less, whereas low-to-almost-undetectable levels of GRir could be observed in these regions. MR mRNA appeared to be evenly distributed over all cell fields of the hippocampus and the dentate gyrus. The topography of GRir, GR mRNA and MR mRNA was found to agree with the cellular distribution of MR and GR binding sites in the hippocampus. Moreover, the microanatomy of MR and GR in the hippocampus appeared to overlap. Our data strongly suggest that MR and GR are co-expressed in the majority of pyramidal and granular neurons of the hippocampal formation. This assumption is based on coherence in the detection of different aspects of the receptor cycle of MR and GR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The mannose receptor (MR), the prototype of a new family of multilectin receptor proteins important in innate immunity, undergoes rapid internalization and recycling from the endosomal system back to the cell surface. Sorting of the MR in endosomes prevents the receptor from entering lysosomes where it would be degraded. Here, we focused on a diaromatic sequence (Tyr(18)-Phe(19)) in the MR cytoplasmic tail as an endosomal sorting signal. The subcellular distribution of chimeric constructs between the MR and the cation-dependent mannose 6-phosphate receptor was assessed by Percoll density gradients and cell surface assays. Unlike the wild type constructs, mutant receptors with alanine substitutions of Tyr(18)-Phe(19) were highly missorted to lysosomes, indicating that the di-aromatic motif of the MR cytoplasmic tail mediates sorting in endosomes. Within this sequence Tyr(18) is the key residue with Phe(19) contributing to this function. Moreover, Tyr(18) was also found to be essential for internalization, consistent with the presence of overlapping signals for internalization and endosomal sorting in the cytosolic tail of the MR. A di-aromatic amino acid sequence in the cytosolic tail has now been shown to function in two receptors known to be internalized from the plasma membrane, the MR and the cation-dependent mannose 6-phosphate receptor. This feature therefore appears to be a general determinant for endosomal sorting.  相似文献   

11.
12.
The Mycobacterium tuberculosis (M.tb) envelope is highly mannosylated with phosphatidyl-myo-inositol mannosides (PIMs), lipomannan, and mannose-capped lipoarabinomannan (ManLAM). Little is known regarding the interaction between specific PIM types and host cell C-type lectin pattern recognition receptors. The macrophage mannose receptor (MR) and dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells engage ManLAM mannose caps and regulate several host responses. In this study, we analyzed the association of purified PIM families (f, separated by carbohydrate number) and individual PIM species (further separated by fatty acid number) from M.tb H(37)R(v) with human monocyte-derived macrophages (MDMs) and lectin-expressing cell lines using an established bead model. Higher-order PIMs preferentially associated with the MR as demonstrated by their reduced association with MDMs upon MR blockade and increased binding to COS-1-MR. In contrast, the lower-order PIM(2)f associated poorly with MDMs and did not bind to COS-1-MR. Triacylated PIM species were recognized by MDM lectins better than tetra-acylated species and the degree of acylation influenced higher-order PIM association with the MR. Moreover, only higher-order PIMs that bind the MR showed a significant increase in phagosome-lysosome fusion upon MR blockade. In contrast with the MR, the PIM(2)f and lipomannan were recognized by DC-SIGN comparable to higher-order PIMs and ManLAM, and the association was independent of their degree of acylation. Thus, recognition of M.tb PIMs by host cell C-type lectins is dependent on both the nature of the terminal carbohydrates and degree of acylation. Subtle structural differences among the PIMs impact host cell recognition and response and are predicted to influence the intracellular fate of M.tb.  相似文献   

13.
Immature monocyte-derived dendritic cells (DC) strongly express the endocytic mannose receptor (MR). Addition of a specific anti-MR mAb (clone PAM-1) for 24 h to cultures of immature DC induced phenotypical and functional maturation of the cells, assessed as up-regulation of costimulatory molecules and CD83, and chemotactic response to CCL19. A different isotype-matched anti-MR mAb (clone 19.2) had no significant effect. Engagement of MR with mAb PAM-1 induced the production of the anti-inflammatory cytokines IL-10, IL-1R antagonist, and of the nonsignaling IL-1R type II. In contrast IL-1beta, TNF, and IL-12 were not produced. PAM-1-treated DC were unable to polarize Th1 effector cells and did not secrete the chemokines CXCL10 and CCL19; in turn, they produced large amounts of CCL22 and CCL17, thus favoring the amplification of Th2 circuits. T cells cocultured with PAM-1-matured DC initially proliferated but later became anergic and behaved as suppressor/regulatory cells. Natural ligands binding to MR had differential effects. MUC III (a partially purified mucin), biglycan (a purified complex proteoglycan), and mannosylated lipoarabinomannan from Mycobacterium tuberculosis affected cytokine production with high IL-10, IL-1R antagonist, IL-1R type II, and inhibition of IL-12. In contrast, mannan, dextran, and thyroglobulin had no significant effect. In conclusion, the appropriate engagement of the MR by mAb PAM-1 and selected natural ligands elicit a secretory program in mono-derived DC characterized by a distinct profile of cytokines/chemokines with the ability to dampen inflammation and to inhibit the generation of Th1-polarized immune responses.  相似文献   

14.
15.
The glucocorticoid receptor (GR) interacts specifically with glucocorticoids, whereas its closest relative, the mineralocorticoid receptor (MR), interacts with both glucocorticoids and mineralocorticoids, such as aldosterone. To investigate the mechanism underlying the glucocorticoid/mineralocorticoid specificity of the GR, we used a yeast model system to screen for GR ligand-binding domain mutants, substituted with MR residues in the segment 565-574, that can be efficiently activated by aldosterone. In all such increased activity mutants, valine 571 was replaced by methionine, even though most mutants also contained substitutions of other residues with their MR counterparts. Further analysis in yeast and COS-7 cells has revealed that the identity of residue 571 determines the behavior of other MR substituted residues in the 565-574 segment. Generally, MR substitutions in this region are only consistent with aldosterone binding if residue 571 is also replaced with methionine (MR conformation). If residue 571 is valine (GR conformation), most other MR substitution mutants drastically reduce interaction with both mineralocorticoid and glucocorticoid hormones. Based on these functional data, we hypothesize that residue 571 functions as a regional organizer involved in discriminating between glucocorticoid and mineralocorticoid hormones. We have used a molecular model of the GR ligand-binding domain in an attempt to interpret our functional data in structural terms.  相似文献   

16.
Soybean (Glycine max (L.) Merr.) root nodules contain the enzymes of the ascorbate-glutathione cycle as an important defense against activated forms of oxygen. A key enzyme in this cycle--monodehydroascorbate reductase (MR)--was purified 646-fold and appeared as a single band on SDS-PAGE with silver or Coomassie blue staining. Purified MR contained 0.7 mol FAD/mol enzyme and had a specific activity of 288 mumol NADH oxidized.min-1.mg protein-1. The enzyme was a single subunit occurring as two isozymes (MR I and MR II) with Mr values of 39,000 and 40,000. Isoelectric focusing revealed that each isozyme consisted of two forms with pl values of 4.6 to 4.7. Ferricyanide and 2,6-dichlorophenol-indophenol were effective as electron acceptors. The purified enzyme did not possess leghemoglobin reductase activity. Inhibition by p-chloromercuribenzoate indicated the involvement of a thiol group in MR activity. The Km values were 5.6, 150, and 7 microM for NADH, NADPH, and monodehydroascorbate, respectively. The pH optimum was 8 to 9. The N-terminal sequence of 10 amino acids of MR II had little homology to known protein sequences.  相似文献   

17.
The receptor for alpha 2-macroglobulin-proteinase complexes (alpha 2MR) was purified recently, and its binding of ligand was shown to depend on calcium ions (Moestrup, S. K., and Gliemann, J. (1989) J. Biol. Chem. 264, 15574-15577). This paper shows that the 440-kDa human placental alpha 2MR is a cysteine-rich glycoprotein with high affinity calcium binding sites important for receptor conformation; and the relationship between Ca2+ concentration and receptor function is presented. Autoradiography showed 45Ca2+ binding to the 440-kDa alpha 2MR blotted onto nitrocellulose from a sodium dodecyl sulfate-polyacrylamide gel. alpha 2MR immobilized on nitrocellulose in the absence of sodium dodecyl sulfate bound 45Ca2+ in the presence of 5 mM Mg2+, and 2-3 microM unlabeled Ca2+ was required to displace half of the bound 45Ca2+. The calcium concentration dependence showed upward concave Scatchard plots, and the number of binding sites was estimated to be approximately eight/alpha 2MR molecule. Binding of calcium did not change in the pH range 6.5-8.0 but decreased at lower pH values. Addition of Ca2+ to the medium was necessary for receptor binding of the alpha 2-macroglobulin-trypsin complex, and half of the maximal binding capacity was obtained with about 16 micrograms Ca2+ at pH 7.8. The requirement for calcium was increased at lower pH values, and half of the maximal 125I-alpha 2M-trypsin binding was obtained with about 30-40 microM Ca2+ at pH 7.0. Monoclonal antibodies were produced against alpha 2MR, and one of them distinguished between the Ca2(+)-occupied and nonoccupied forms. Like Ca2+, Sr2+ and Ba2+ elicited ligand binding affinity and competed for binding with 45Ca2+ in the order Ca2+ greater than Sr2+ greater than Ba2+. In conclusion, calcium ions bind specifically to alpha 2MR with high affinity, and it is likely that several sites on the alpha 2MR molecule have to be occupied to elicit the conformation recognizing the ligand.  相似文献   

18.
19.
Follitropin (FSH) receptors were solubilized from pure light membranes of bovine calf testis, using an optimum detergent to protein ratio of 0.01. The soluble FSH receptor fraction was gel filtered through Sepharose 6B to isolate an active fraction (6B-Fr-1) which behaved as a complex of FSH receptor and Gs protein. The 6B-Fr-1 was concentrated by ultrafiltration and further purified by sequential Sepharose 4B gel filtration, DEAE-cellulose chromatography (to separate the receptor from Gs protein), and wheat germ lectin affinity chromatography. The purified receptor had an FSH-binding capacity of approximately 3.47 nmol/mg of protein with a Kd of 1.9 X 10(-10) M. Yield was 526 micrograms/11.5 kg tested. Radioiodinated, as well as unlabeled purified FSH receptor, migrated on sodium dodecyl sulfate-polyacrylamide gels as a single major band of Mr approximately 240,000. This band was not affected by 8 M urea treatment prior to analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but treatment with dithiothreitol induced the loss of the 240-kDa band, with appearance of an Mr approximately 60,000 band. The availability of highly purified, stable FSH receptor should allow direct studies on its structure-function relationships.  相似文献   

20.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号