首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: In this study we determined the extent to which lactic acid bacteria (LAB) occurred in brandy base wines, their ability to catalyse the malolactic fermentation (MLF) and the effect of MLF on the quality of the base wine and the brandy distillate. METHODS AND RESULTS: Lactic acid bacteria were isolated and enumerated from grape juice, experimental and commercially produced brandy base wines. Spontaneous MLF occurred in approximately 50% of the commercial base wines. The occurrence of MLF had an influence on the quality of the base wines and the resulting distillates. In samples where MLF occurred there was a loss of fruitiness and in the intensity of aroma. Volatile compounds like iso-amyl acetate, ethyl acetate, ethyl caproate, 2-phenethyl acetate and hexyl acetate decreased in samples having undergone MLF, while ethyl lactate, acetic acid and diethyl succinate increased in the same samples. CONCLUSIONS: Spontaneous malolactic fermentation does occur in commercial brandy base wines and it has an influence on base wine and brandy quality. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that MLF influences the quality of the base wine and the resulting distillate and with this in mind commercial base wine producers should be able to produce brandy of higher quality.  相似文献   

2.
Aims:  To characterize the genetic and phenotypic diversity of 135 lactic acid bacteria (LAB) strains isolated from Italian wines that undergone spontaneous malolactic fermentation (MLF) and propose a multiphasic selection of new Oenococcus oeni malolactic starters.
Methods and Results:  One hundred and thirty-five LAB strains were isolated from 12 different wines. On the basis of 16S amplified ribosomal DNA restriction analysis (ARDRA) with three restriction enzymes and 16S rRNA gene sequencing, 120 O. oeni strains were identified. M13-based RAPD analysis was employed to investigate the molecular diversity of O. oeni population. Technological properties of different O. oeni genotypes were evaluated in synthetic medium at increasing selective pressure, such as low pH (3·5, 3·2 and 3·0) and high ethanol values (10, 11 and 13% v/v). Finally, the malolactic activity of one selected strain was assessed in wine by malolactic trial in winery.
Conclusions:  The research explores the genomic diversity of wine bacteria in Italian wines and characterizes their malolactic metabolism, providing an efficient strategy to select O. oeni strains with desirable malolactic performances and able to survive in conditions simulating the harsh wine environment.
Significance and Impact of the Study:  This article contributes to a better understanding of microbial diversity of O. oeni population in Italian wines and reports a framework to select new potentially O. oeni starters from Italian wines during MLF.  相似文献   

3.
During malolactic fermentation (MLF), lactic acid bacteria influence wine aroma and flavour by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. The present study investigated the impact of different MLF inoculation strategies with two different Oenococcus oeni strains on cool climate Riesling wines and the volatile wine aroma profile. Four different timings were chosen for inoculation with bacteria to conduct MLF in a Riesling must/wine with a high acidity (pH 2.9–3.1). Treatments with simultaneous inoculation showed a reduced total fermentation time (alcoholic and malolactic) compared to the sequential inoculations. No negative impact of simultaneous alcoholic and malolactic fermentation on fermentation success and on the final wine volatile aroma composition was observed. Compared to sequential inoculation, wines with co-inoculation tended to have higher concentrations of ethyl and acetate esters, including acetic acid phenylethylester, acetic acid 3-methylbutylester, butyric acid ethylester, lactic acid ethylester and succinic acid diethylester. Results of this study provide some alternatives to diversify the number of wine styles by safely conducting MLF in low-pH, cool-climate white musts with potential high alcohol content.  相似文献   

4.
AIMS: Acetaldehyde is the major carbonyl compound formed during winemaking and has implications for sensory and colour qualities of wines as well as for the use of the wine preservative SO(2). The current work investigated the degradation of acetaldehyde and SO(2)-bound acetaldehyde by two commercial Oenococcus oeni starters in white wine. METHODS AND RESULTS: Wines were produced by alcoholic fermentation with commercial yeast and adjusted to pH 3.3 and 3.6. While acetaldehyde was degraded rapidly and concurrently with malic acid at both pH values, SO(2)-bound acetaldehyde caused sluggish bacterial growth. Strain differences were small. CONCLUSIONS: Efficient degradation of acetaldehyde can be achieved by commercial starters of O. oeni. According to the results, the degradation of acetaldehyde could not be separated from malolactic conversion by oenococci. While this may be desirable in white winemaking, it may be necessary to delay malolactic fermentation (MLF) in order to allow for colour development in red wines. SO(2)-bound acetaldehyde itself maybe responsible for the sluggish or stuck MLF, and thus bound SO(2) should be considered next to free SO(2) in order to evaluate malolactic fermentability. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study provides new results regarding the metabolism of acetaldehyde and SO(2)-bound acetaldehyde during the MLF in white wine. The information is of significance to the wine industry and may contribute to reducing the concentration of wine preservative SO(2).  相似文献   

5.
Oenococcus oeni ATCC 23279 cells immobilized on delignified cellulosic material (DCM) were used for malolactic fermentation (MLF). In first, eleven repeated alcoholic fermentation batches of white must of 11-12 degrees Be initial density were performed by Saccharomyces cerevisiae cells immobilized on delignified cellulosic material at 20 degrees C. Subsequently, the induction of MLF in the eleven taken wine batches by O. oeni cells immobilized on DCM took place at 27 degrees C. From the 3rd MLF batch up to 10th, the malic acid degradation was 53.1 up to 67.4% and the cfu of the immobilized cells/g of biocatalyst remained stable. The produced lactic acid was less than the stoichiometric yield and acetic acid content was significantly reduced after MLF not contributing in an important increase of the volatile acidity of wine. Ethanol, higher alcohols acetaldehyde and diacetyl contents in wines after MLF were in acceptable levels.  相似文献   

6.
Malolactic fermentation (MLF) is an integral step in red winemaking, which in addition to deacidifying wine can also influence the composition of volatile fermentation-derived compounds with concomitant affects on wine sensory properties. Long-established winemaking protocols for MLF induction generally involve inoculation of bacteria starter cultures post alcoholic fermentation, however, more recently there has been a trend to introduce bacteria earlier in the fermentation process. For the first time, this study shows the impact of bacterial inoculation on wine quality parameters that define red wine, including wine colour and phenolics, and volatile fermentation-derived compounds. This study investigates the effects of inoculating Shiraz grape must with malolactic bacteria at various stages of alcoholic fermentation [beginning of alcoholic fermentation (co-inoculation, with yeast), mid-alcoholic fermentation, at pressing and post alcoholic fermentation] on the kinetics of MLF and wine chemical composition. Co-inoculation greatly reduced the overall fermentation time by up to 6 weeks, the rate of alcoholic fermentation was not affected by the presence of bacteria and the fermentation-derived wine volatiles profile was distinct from wines produced where bacteria were inoculated late or post alcoholic fermentation. An overall slight decrease in wine colour density observed following MLF was not influenced by the MLF inoculation regime. However, there were differences in anthocyanin and pigmented polymer composition, with co-inoculation exhibiting the most distinct profile. Differences in yeast and bacteria metabolism at various stages in fermentation are proposed as the drivers for differences in volatile chemical composition. This study demonstrates, with an in-depth analysis, that co-inoculation of yeast and bacteria in wine fermentation results in shorter total vinification time and produces sound wines, thus providing the opportunity to stabilise wines more rapidly than traditional inoculation regimes permit and thereby reducing potential for microbial spoilage.  相似文献   

7.
Malolactic fermentation (MLF) plays an important role in the production of wine, especially red wines, resulting in microbial stability, deacidification, as well as contributing to the aroma profile. MLF can be influenced by a number of factors. In this study, the influence of pH and ethanol on expression of the structural malolactic enzyme gene (mle) from Lactobacillus plantarum was investigated in a synthetic wine media, as well as in wine using quantitative PCR. Expression of mle was shown to be inducible by the presence of malic acid, with increased expression in the middle of MLF. Expression of mle was also shown to be increased at low pH values and decreased in the presence of ethanol. This indicates the role of MLF in acid tolerance and the negative impact of ethanol on the completion of MLF. The results therefore provide further evidence that L. plantarum should be applied as co-inoculation for MLF where alcohol will initially not have a negative impact on the malic acid degradation.  相似文献   

8.
AIMS: To study arginine degradation and carcinogenic ethyl carbamate precursor citrulline formation during and after malolactic fermentation (MLF). METHODS AND RESULTS: MLF was induced in white wine with two commercial Oenococcus oeni strains under different winemaking conditions regarding the type of alcoholic fermentation (spontaneous, induced) and the lees management (racked, on lees). Arginine degradation and citrulline formation did not occur during malic acid degradation in any treatment. In five of the six treatments in which arginine degradation took place, it occurred 3 weeks after malic acid depletion and significant amounts of citrulline were formed. Presence of yeast lees in wines led to increased citrulline formation. Conclusions: This study suggests that arginine metabolism is inhibited in oenococci at low pH values (< 3.5) and that in the postalcoholic fermentation phase, citrulline formation from arginine degradation can be avoided if MLF is induced by pure cultures of O. oeni with inhibition of the bacterial biomass after malic acid depletion. Residual yeast lees in the wine have been identified as a significant risk factor for increased citrulline formation. SIGNIFICANCE AND IMPACT OF THE STUDY: Conclusions drawn from this study allow reducing the risk of carcinogenic ethyl carbamate formation from citrulline excretion by wine lactic acid bacteria.  相似文献   

9.
Inoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must. The time courses of glucose and fructose, acetaldehyde, several organic acids, and nitrogenous compounds were measured along with the final values of other key wine parameters. Sensory evaluation was done after 12 months of storage. The current study could not confirm a negative impact of simultaneous AF/MLF on fermentation success and kinetics or on final wine parameters. While acetic acid concentrations were slightly increased in wines after simultaneous AF/MLF, the differences were of neither practical nor legal significance. No statistically significant differences were found with regard to the final values of pH or total acidity and the concentrations of ethanol, acetaldehyde, glycerol, citric and lactic acids, and the nitrogen compounds arginine, ammonia, urea, citrulline, and ornithine. Sensory evaluation by a semiexpert panel confirmed the similarity of the wines. However, simultaneous inoculation led to considerable reductions in overall fermentation durations. Furthermore, differences of physiological and microbiological relevance were found. Specifically, we report the vinification of "super-dry" wines devoid of glucose and fructose after simultaneous inoculation of yeast and bacteria.  相似文献   

10.
Inoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must. The time courses of glucose and fructose, acetaldehyde, several organic acids, and nitrogenous compounds were measured along with the final values of other key wine parameters. Sensory evaluation was done after 12 months of storage. The current study could not confirm a negative impact of simultaneous AF/MLF on fermentation success and kinetics or on final wine parameters. While acetic acid concentrations were slightly increased in wines after simultaneous AF/MLF, the differences were of neither practical nor legal significance. No statistically significant differences were found with regard to the final values of pH or total acidity and the concentrations of ethanol, acetaldehyde, glycerol, citric and lactic acids, and the nitrogen compounds arginine, ammonia, urea, citrulline, and ornithine. Sensory evaluation by a semiexpert panel confirmed the similarity of the wines. However, simultaneous inoculation led to considerable reductions in overall fermentation durations. Furthermore, differences of physiological and microbiological relevance were found. Specifically, we report the vinification of “super-dry” wines devoid of glucose and fructose after simultaneous inoculation of yeast and bacteria.  相似文献   

11.
Malolactic fermentation (MLF) in wine can be accomplished by relying on the natural microflora or by inducing through inoculation of a specific strain(s) of malolactic bacteria, primarily strains of Leuconostoc oenos. Problems with inducing MLF include intrinsic factors of the grape must such as pH, presence of sulfur dioxide, and ethanol in addition to antagonism of malolactic bacteria by wine yeast. Current methods and new technology to improve the predictability of MLF are discussed.  相似文献   

12.
Malolactic fermentation (MLF), which improves organoleptic properties and biologic stability of some wines, may cause wine spoilage if uncontrolled. Bacteriocins were reported as efficient preservatives to control MLF through their bactericidal effect on malolactic bacteria. Leuconostoc mesenteroides subsp. cremoris W3 isolated from wine produces an inhibitory substance that is bactericidal against malolactic bacteria in model wine medium. Treatment of the culture supernatant of strain W3 with proteases eliminated the inhibitory activity, which proved that it is a true bacteriocin and we tentatively termed it mesentericin W3. The bacteriocin inhibited the growth of food-borne pathogenic bacteria such as Enterococcus faecalis, Listeria monocytogenes, and malolactic bacteria. It was active over a wide pH range and stable to organic solvents and heat. Mesentericin W3 was purified to homogeneity by a pH-mediated cell adsorption–desorption method, cation exchange, hydrophobic interaction, and reverse-phase chromatography. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy (MS) and partial amino acid sequence analysis revealed that mesentericin W3 was identical to mesentericin Y105.  相似文献   

13.
Malolactic fermentation (MLF) is a secondary bioconversion developed in some wines involving malic acid decarboxylation. The induction of MLF in wine by cultures of free and immobilized Oenococcus oeni cells was investigated. This work reports on the effect of surface charges in the immobilization material, a recently described fibrous sponge, as well as the pH and the composition of the media where cells are suspended. A chemical treatment provided positive charge to the sponges (DE or DEAE) and gave the highest cell loadings and subsequent resistance to removal. Preculture media to grow the malolactic bacteria before the immobilization procedure were also evaluated. We have established favorable conditions for growth (Medium of Preculture), suspension solution (Tartrate-Phosphate Buffer), suspension pH (3.5-5.5) and immobilization matrix (DE or DEAE cellulose sponge) to induce MLF in red wine. The use of a semi-continuous system permitted a high-efficiency malic acid conversion by 2 x 10(9) cfu sponge(-)(1) in at least four subsequent batch fermentations.  相似文献   

14.
Thirty-two strains were isolated from spoiled port wines, from musts and from various styles of young, Northeastern Portuguese red table wines that had undergone spontaneous malolactic fermentation. Comparison of their SDS-PAGE whole-cell protein patterns with an SDS-PAGE database of lactic acid bacteria indicated that the isolates were members of the species Leuconostoc oenos or Lactobacillus paracasei subsp. paracasei. The latter were found in low acidity table wines and in port wine. The isolation of Lactobacillus paracasei strains from wines indicates the importance of using known strains for wine deacidification because spontaneous malolactic fermentation of table wines can occur from an indigenous flora, adapted to the particular composition of the wine.  相似文献   

15.
Aims: To isolate indigenous Oenococcus oeni strains suitable as starters for malolactic fermentation (MLF), using a reliable polyphasic approach. Methods and Results: Oenococcus oeni strains were isolated from Nero di Troia wines undergoing spontaneous MLF. Samples were taken at the end of alcoholic fermentation and during MLF. Wine samples were diluted in a sterile physiological solution and plated on MRS and on modified FT80. Identification of O. oeni strains was performed by a polymerase chain reaction (PCR) experiment using strain‐specific primers. Strains were further grouped using a multiplex RAPD‐PCR analysis. Then, six strains were inoculated in two wine‐like media with two different ethanol concentrations (11 and 13% vol/vol) with a view to evaluate their capacity to grow and to perform MLF. In addition, a quantitative PCR (qRT‐PCR) approach was adapted to monitor the physiological state of the strains selected. Conclusion: A positive correlation between the malolactic activity performance and the ability to develop and tolerate stress conditions was observed for two selected O. oeni strains. Significance and Impact of the Study: The results reported are useful for the selection of indigenous MLF starter cultures with desired oenological traits from typical regional wines. It should be the base for the improvement in organoleptic quality of typical red wine.  相似文献   

16.
AIMS: During malolactic fermentation (MLF), the secondary metabolisms of lactic acid bacteria (LAB) contribute to the organoleptic modification of wine. To understand the contribution of MLF, we evaluated the capacity of various wine LAB to metabolize methionine. METHODS AND RESULTS: Using gas chromatography (GC) coupled either with mass spectrometry (MS) or a flame photometry detector in sulphur mode (FPD), we studied this metabolism in laboratory media and wine. In laboratory media, several LAB isolated from wine were able to metabolize methionine. They formed methanethiol, dimethyl disulphide, 3-(methylsulphanyl)propan-1-ol and 3-(methylsulphanyl)propionic acid. These are known to have powerful characteristic odours and play a role in the aromatic complexity of wine. In various red wines, after MLF only the 3-(methylsulphanyl)propionic acid concentration increased significantly, as verified with several commercial starter cultures. This compound, which is characterized by chocolate and roasted odours, could contribute to the aromatic complexity produced by MLF. CONCLUSIONS: This study shows that LAB isolated from wine, especially OEnococcus oeni strains, the major species in MLF, are able to metabolize methionine to form volatile sulphur compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the capacity of wine LAB to metabolize methionine.  相似文献   

17.
苹果酸-乳酸酶是苹果酸-乳酸发酵过程中负责苹果酸转化为乳酸的功能酶。在进行酒酒球菌SD2a的苹果酸-乳酸酶基因(mleA)克隆测序基础上,以PGK1强启动子和ADH1终止子为调控元件,以大肠杆菌-酵母菌穿梭质粒YEp352为载体,构建了重组表达质粒并转化酿酒酵母YS58。酵母转化子用SD/Ura平板筛选鉴定。斑点杂交检测表明目的基因mleA转化到受体菌中,SDSPAGE检测表明获得的转化子表达了约60kDa的目标蛋白。获得的转化子在添加了L苹果酸的培养基中培养4d;取培养液上清用HPLC检测L苹果酸及L乳酸含量,采用t检验进行差异显著性分析,结果表明mleA基因进行了功能性的表达,将L苹果酸转化成L乳酸,L苹果酸和L乳酸含量分别与对照差异极显著和显著,苹果酸的相对降低率平均为20.95%。在有选择压力条件下,重组质粒相对稳定,而在无选择压力条件下,传代培养10d后大约有65%的重组质粒丢失。  相似文献   

18.
AIMS: To study the population dynamics of indigenous malolactic bacteria in a Greek winery and to examine their potential to produce detrimental levels of biogenic amines (BA) under winemaking conditions. METHODS AND RESULTS: Although the wines studied were of different vintage, grape variety and enological characteristics, molecular typing of malolactic bacteria revealed only a low number of strains within the single-species populations of Oenococcus oeni that developed during spontaneous fermentations. Strain MF1, originating primarily from the vineyards surrounding the winery invariably predominated in almost all samples. HPLC analysis showed a slight increase in the BA, putrescine, tyramine and phenylethylamine after malolactic conversion, while histamine, methylamine and ethylamine remained unaffected. No correlation could be established between the BA profiles and the bacterial compositions or the amino acid concentrations in wine samples studied. CONCLUSIONS: A certain regional bacterial flora is established in the winery that prevails in spontaneous malolactic fermentations (MLF) irrespective of the wine characteristics. In all cases, the BA content of the wines after malolactic conversion was within enologically acceptable levels. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the malolactic bacteria occurring naturally in spontaneous MLF in Greek red wines and a preliminary assessment of their impact on wine safety in relation to BA.  相似文献   

19.
This study compares 11 commercial cultures of Leuconostoc oenos and Lactobacillus plantarum in Cabernet Sauvignon, Pinot Noir and Chardonnay wines. Performance of the cultures was found to be greatly influenced by wine type. Better survival of the bacteria was observed in Cabernet Sauvignon and Pinot Noir wines. The time necessary to complete malolactic fermentation (MLF) was 65 ± 14 d for Chardonnay, 71 ± 3 d for Cabernet Sauvignon, and 25 ± 8 d for Pinot Noir. The maximal rate of malate utilization was 0·4 g d-1 for Pinot Noir, and 0·2 g d-1 for the two other wine types. Final diacetyl concentration was lower in Chardonnay wines (highest 0·58 mg l-1) compared to the other wines (highest 5·8 mg l-1). Malic and citric acid were co-metabolized by all strains. None of the strains metabolized glycerol. Significant differences in final diacetyl concentration of wine vinified with the different strains were found. Panelists could reliably differentiate MLF wines from non-MLF wines, irrespective of their diacetyl content, indicating that diacetyl is not the only important MLF flavour.  相似文献   

20.
Metabolic engineering of malolactic wine yeast   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号