首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of K+ and H+ in the anaeronically and aerobically grown bacterium Serratia marcescens has been studied. The volumes of one cell of the anaerobically and aerobically grown bacterium were 3.7 X 10(-13) cm3 and 2.4 X 10(-13) cm3, respectively. Irrespective of the growth conditions the bacteria manifested the same respiration rate. However, the values of membrane potential for the anaerobically and aerobically grown bacterium were different and equal to -130 mV and -175 mV (interior negative), respectively, in the absence of an exogenic energy source. KCN + DCCD decreases delta psi down to almost zero in both species. DCCD alone decreases delta psi partially in anaerobes and increases delta psi in aerobes, whereas KCN alone reduces delta psi partially in both species. The introduction of glucose into the medium containing K+ reduces the absolute value of delta psi to [-160] mV in aerobes and to [-20] mV in anaerobes. The effect is not observed without external K+. In the presence of arsenate a delta psi is not reduced after the addition of glucose. At pH 7.5-7.8 the ATP level in aerobes grows notably faster than in anaerobes. The H+ extrusion becomes intensified when K+ uptake is activated by the increase in external osmotic pressure. Apparent Km and Vmax for K+ accumulation are 1.2 mM and 0.4 mM.min-1.g-1. The decrease of delta psi by glucose or KCN + DCCD have no effect on the K+ uptake whereas CCCP inhibits potassium accumulation. At the same time, arsenate stabilizes the delta psi value, but blocks K+ uptake. The accumulation of K+ correlates with the potassium equilibrium potential of -200 mV calculated according to the Nernst equation, whereas the delta psi measured was not more than [-25] mV. The calculated H+/ATP stoichiometry was 3.3 for aerobes. It was assumed that a constitutive K+ pump having a K+/ATP ratio equal to 2 or 3 operates in S. marcescens membranes.  相似文献   

2.
The role of K+ and Na+ in the maintenance of the proton motive force (delta p) was studied in Escherichia coli incubated in alkaline media. Cells respiring in Tris buffer (pH 7.8) that contained less than 100 microEq of K+ and Na+ per liter had a normal delta p of about -165 mV. At pH 8.2, however, the delta p was reduced significantly. The decrease in delta p at pH 8.2 was due to a marked decrease in the transmembrane potential (delta psi), while the internal pH remained at 7.5 to 7.7. When KCl or NaCl, but not LiCl or choline chloride, was added to the cells, the delta psi rose to the values seen at an external pH of 7.8. In addition, choline chloride inhibited the enhancement of delta psi by K+. None of the salts had a significant effect on the internal pH. The effects can be attributed to alterations of K+ or Na+ cycling in and out of the cells via the known K+ and Na+ transport systems.  相似文献   

3.
The effect of the plasma membrane potential delta psi p on the transport rate and steady state distribution of Li+ was assessed in rat cortical synaptosomes. Up to 15 mM Li+ failed to saturate Li+ influx into polarized synaptosomes in a Na+-based medium with 3 mM external K+. Veratridine increased and tetrodotoxin, ouabain, or high external K+ decreased the rate of Li+ influx. At steady state, Li+ was concentrated about 3-fold in resting synaptosomes at 0.3 to 1 mM Li+ externally. Subsequent depolarization of the plasma membrane by veratridine or high external K+ induced an immediate release of Li+. When graded depolarizations were imposed onto the plasma membrane by varying concentrations of ouabain, veratridine, or external K+, steady state distribution of Li+ was linearly related with K+ distribution or electrochemical activity coefficients. It was concluded that uptake rate and steady state distribution of Li+ depend significantly on delta psi p. However, Li+ gradients were lower than predicted from delta psi p, suggesting that (secondary) active transport systems counteracted passive equilibration by uphill extrusion of Li+. The electrochemical potential difference delta mu Li+ maintained at a delta psi p of -72 mV was calculated to 4.2 kJ/mol of Li+. At physiological external K+, Li+ was not actively transported by the sodium pump. The ouabain sensitivity resulted from the coupling of Li+ uptake to the pump-dependent K+ diffusion potential. In low K+ and K+-free media, however, active transport of Li+ by the sodium pump contributed to total uptake. In the absence of K+, Li+ substituted for K+ in generating a delta psi p of -64 mV maximally, as calculated from TPMP+ distribution at 40 mM external Li+. Since Li+ gradients were far too low to account for a diffusion potential, it was assumed that Li+ gave rise to an electrogenic pump potential.  相似文献   

4.
Factors determining the plasma-membrane potential of lymphocytes.   总被引:10,自引:5,他引:5       下载免费PDF全文
1. Lymphocytes from pig mesenteric lymph node have low permeability to K+ (Rb+), Na+ and Cl-. None of these ions is in Nernst equilibrium with the plasma-membrane potential (delta psi p). 2. delta psi p can be calculated from the transmembrane distribution of the permeant cation methyltriphenylphosphonium (TPMP+) in the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) to abolish uptake into intracellular mitochondria. In normal culture medium delta psi p is 56 mV. 3. A similar potential is found in T-enriched pig cells and in mouse thymocytes. 4. The contribution of electrogenic (Na+ + K+)ATPase to delta psi p is about 7 mV. 5. The remainder of the lymphocyte delta psi p is a polyionic potential set up by K+ and Cl- with a permeability coefficient for Cl- of similar magnitude to that for K+.  相似文献   

5.
Transport of Na+ and its relationship with membrane potential (delta psi m) was examined in Anabaena L-31 (a fresh water cyanobacterium) and Anabaena torulosa (a brackish water cyanobacterium) which require Na+ for diazotrophic growth. The data on the effect of N,N'-dicyclohexylcarbodiimide indicated that delta psi m was generated by electrogenic proton extrusion predominantly mediated by ATPase(s). In addition, operation of a plasmalemmabound, non-ATP-requiring, H+-pumping terminal oxidase was suggested by the sensitivity of delta psi m to anaerobiosis, cyanide and azide, all of which inhibit aerobic respiration. The response of delta psi m to external pH and external Na+ or K+ concentrations indicated that a diffusion potential of Na+ or K+ may not contribute significantly to delta psi m. Kinetic studies showed that Na+ influx was unlikely to be a result of Na+/NA+ exchange but was a carrier-mediated secondary active transport insensitive to low concentrations (less than 10 mM) of external K+. There was a close correspondence between changes in delta psi m and Na+ influx; all the treatments which caused depolarisation (such as low temperature, dark, cyanide, azide, anaerobiosis, ATPase inhibitors) lowered Na+ influx whereas treatments which caused hyperpolarisation (such as 2,4-dinitrophenol, nigericin) enhanced Na+ influx. Remarkably low intracellular Na+ concentrations were maintained by these cyanobacteria by means of active efflux of the cation. The basic mechanism of Na+ transport in the fresh water and the brackish water cyanobacterium was similar but the latter demonstrated less influx, more efficient efflux, more affinity of carriers for Na+ and less accumulation of Na+, all attributes favouring salt tolerance.  相似文献   

6.
The addition of 5 . 10(-5) M or less of dicyclohexylcarbodiimide to Mycoplasma mycoides var. Capri preferentially influences K+ influx rather than efflux and reduces by 30--40% the activity of the membrane-bound Mg2+- ATPase. Adding valinomycin to metabolizing cells does not markedly affect K+ distribution but induces a rapid and complete loss of intracellular K+ in non-metabolizing cells. Uncoupling agents such as dinitrophenol, carbonylcyanide p-trifluoromethoxyphenylhydrazone, dissipate the K+ concentration gradient only when combined with valinomycin. Variations in the merocyanine fluorescence intensity indicate that a transmembrane electrical potential (delta psi) is generated on cell energization. This delta psi, not affected by valinomycin or uncouplers when used alone, is collapsed by a mixture of both. No change in fluorescence intensity can be detected when glucose is added to dicyclohexylcarbodiimide treated organisms. These experiments suggest that the membrane-bound Mg-ATPase activity control K+ distribution in these organisms through the generation of a transmembrane electrical potential difference.  相似文献   

7.
Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla   总被引:2,自引:0,他引:2  
B J Efiok  D A Webster 《Biochemistry》1990,29(19):4734-4739
Vitreoscilla is a Gram-negative bacterium with unique respiratory physiology in which Na+ was implicated as a coupling cation for the generation of a transmembrane electrical gradient (delta psi). Thus, cells respiring in the presence of 110 mM Na+ generated a delta psi of -142 mV compared to only -42 and -56 mV for Li+ and choline, respectively, and even the -42 and -56 mV were insensitive to the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (DTHB). The kinetics of delta psi formation and collapse correlated well with the kinetics of Na+ fluxes but not with those of H+ fluxes. Cyanide inhibited respiration, Na+ extrusion, and delta psi formation 81% or more, indicating that delta psi formation and Na+ extrusion were coupled to respiration. Experiments were performed to distinguish among three possible transport systems for this coupling: (1) a Na(+)-transporting ATPase; (2) an electrogenic Na+/H+ antiport system; (3) a primary Na+ pump directly driven by the free energy of electron transport. DCCD and arsenate decreased cellular ATP up to 86% but had no effect on delta psi, evidence against a Na(+)-transporting ATPase. Low concentrations of DTHB had no effect on delta psi; high concentrations transiently collapsed delta psi, but led to a stimulation of Na+ extrusion, the opposite of that expected for a Na+/H+ antiport system. Potassium ion, which collapses delta psi, also stimulated Na+ extrusion. The experimental evidence is against Na+ extrusion by mechanisms 1 and 2 and supports the existence of a respiratory-driven primary Na+ pump for generating delta psi in Vitreoscilla.  相似文献   

8.
The electrochemical proton gradient in Mycoplasma cells   总被引:2,自引:0,他引:2  
The electrochemical proton gradient, delta mu H+ generated upon glycolysis by Mycoplasma mycoides var. Capri cells has been determined. The components, the transmembrane pH gradient, delta pH, and the membrane potential, delta psi, were measured using several methods. The determination of the delta pH was conducted by measuring the transmembrane distribution of weak acids (acetate and butyrate) and of a weak base (methylamine), using flow dialysis and filtration techniques. The transmembrane electrical potential was determined from the distribution of the lipophilic cation Ph3MeP+ and of Rb+ or K+ in the presence of valinomycin. At extra-cellular pH 7.2, glycolyzing Mycoplasma cells maintain an internal pH more alkaline (0.5 pH unit) than that of the milieu and an electrical potential of - 85 mV, interior negative. The delta mu H+ in M. mycoides var. Capri cells is thus about - 115 mV. When the external pH was altered from 7.7 to 5.7 delta psi decreased from - 90 mV to - 60 mV. On other hand although the internal pH decreased, delta pH was found to increase from 0.2 to 1.0 pH unit. Since the changes in delta psi were largely compensated by the changes in delta pH, delta mu H+ remained practically constant at about - 115 mV throughout the pH range tested. Finally, inhibition of delta pH by N,N'-dicyclohexylcarbodiimide, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or nigericin confirmed that chemiosmotic phenomena contribute to energy transduction across the membranes of M. mycoides var. Capri cells.  相似文献   

9.
The kinetics of Na+ efflux from Escherichia coli RA 11 membrane vesicles taking place along a favorable Na+ concentration gradient are strongly dependent on the generation of an electrochemical proton gradient. An energy-dependent acceleration of the Na+ efflux rate is observed at all external pHs between 5.5 and 7.5 and is prevented by uncoupling agents. The contributions of the electrical potential (delta psi) and chemical potential (delta pH) of H+ to the mechanism of Na+ efflux acceleration have been studied by determining the effects of (a) selective dissipation of delta psi and delta pH in respiring membrane vesicles with valinomycin or nigericin and (b) imposition of outwardly directed K+ diffusion gradients (imposed delta psi, interior negative) or acetate diffusion gradients (imposed delta pH, interior alkaline). The data indicate that, at pH 6.6 and 7.5, delta pH and delta psi individually and concurrently accelerate the downhill Na+ efflux rate. At pH 5.5, the Na+ efflux rate is enhanced by delta pH only when the imposed delta pH exceeds a threshold delta pH value; moreover, an imposed delta psi which per se does not enhance the Na+ efflux rate does contribute to the acceleration of Na+ efflux when imposed simultaneously with a delta pH higher than the threshold delta pH value. The results strongly suggest that the Na+-H+ antiport mechanism catalyzes the downhill Na+ efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The paper analyzes the factors affecting the H+-K+ exchange catalyzed by rat liver mitochondria depleted of endogenous Mg2+ by treatment with the ionophore A23187. The exchange has been monitored as the rate of K+ efflux following addition of A23187 in low-K+ media. (1) The H+-K+ exchange is abolished by uncouplers and respiratory inhibitors. The inhibition is not related to the depression of delta pH, whereas a dependence is found on the magnitude of the transmembrane electrical potential, delta psi. Maximal rate of K+ efflux is observed at 180-190 mV, whereas K+ efflux is inhibited below 140-150 mV. (2) Activation of H+-K+ exchange leads to depression of delta pH but not of delta psi. Respiration is only slightly stimulated by the onset of H+-K+ exchange in the absence of valinomycin. These findings indicate that the exchange is electroneutral, and that the delta psi control presumably involves conformational changes of the carrier. (3) Incubation in hypotonic media at pH 7.4 or in isotonic media at alkaline pH results in a marked activation of the rate of H+-K+ exchange, while leaving unaffected the level of Mg2+ depletion. This type of activation results in partial 'uncoupling' from the delta psi control, suggesting that membrane stretching and alkaline pH induce conformational changes on the exchange carrier equivalent to those induced by high delta psi. (4) The available evidence suggests that the activity of the H+-K+ exchanger is modulated by the electrical field across the inner mitochondrial membrane.  相似文献   

11.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor delta psi generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse delta pNa, i.e., [Na+]in greater than [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when delta pNa of the proper direction [( Na+]in less than [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (delta pNa is low) is decreased by CCCP even without monensin. Artificial formation of delta pNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

12.
E R Kashket 《Biochemistry》1982,21(22):5534-5538
The H+/ATP stoichiometry of the proton-translocating ATPase was investigated in growing and nongrowing, respiring cells of Escherichia coli. The protonmotive force, delta p, was determined by measuring the transmembrane chemical gradient of protons, delta pH, from the cellular accumulation of benzoate anions, and the electrical gradient, delta psi, from the accumulation of the lipophilic cation tetraphenylphosphonium (TPP+). The accumulation of lactose was also used to calculate the delta p in this lactose operon constitutive beta-galactosidase negative mutant. The phosphorylation potential, delta GP', was determined by measuring the cellular concentration of ATP, ADP, and inorganic phosphate. According to chemiosmotic principles, at steady state the phosphorylation potential is in thermodynamic equilibrium with the protonmotive force, and thus the ratio delta p/delta GP' can be used to determine the H+/ATP ratio. Respiring E. coli cells, in mid-exponential phase of growth or incubated in buffer, at external pHs from 6.25 to 8.25 had a constant delta GP' of about 500 mV. The H+/ATP ratio was found to be 3 when the delta p value derived from lactose accumulation levels was used. However, when the delta p values derived from delta pH and delta psi were used in the calculations, the H+/ATP ratio varied from about 2.5 at external pH 6.25 to about 4 at pH 8.25. Arguments are presented for the hypothesis that the delta psi values obtained from the TPP+ measurements are likely to be inaccurate and that a value of 3 H+/ATP, independent of the external pH, is likely to be the valid stoichiometry.  相似文献   

13.
H+-K+-exchange via the Trk-like system of K+ accumulation takes place in anaerobically grown S. typhimurium LT-2 with stable ratio of DCC-sensitive ionic fluxes, equal to 2H+ of a cell for one K+ of the medium. This exchange is now observed in the mutant S. typhimurium TH-31 with unfunctional H+-ATPase. H+-K+-exchange in aerobically grown S. typhimurium LT-2 has unstable ratio of ionic fluxes. The rate of K+ uptake in anaerobically grown bacteria is higher than that in the aerobically grown ones. Q10 is about 1.8 both for H+ transfer and K+ uptake in anaerobically grown bacteria, but it is 1.7 and 0.9 respectively in the aerobically grown ones. Delta psi is not changed by different temperatures both in anaerobically and aerobically grown bacteria. The distribution of K+ in anaerobically grown bacteria is higher than 10(3) and the potassium equilibrium potential is much higher than the measured delta psi. In aerobically grown bacteria the distribution of K+ is in good conformity with the measured delta psi. H+ and K+ transport in anaerobically grown cells is likely to proceed by the same mechanism, which includes H+-ATPase and the Trk-like system. In aerobically grown bacteria these transport systems work separately, and the Trk-like system as K+-ionophore serving for K+ uptake across the electrical field on the membrane.  相似文献   

14.
The proton motive force (PMF) was determined in Rhodobacter sphaeroides under anaerobic conditions in the dark and under aerobic-dark and anaerobic-light conditions. Anaerobically in the dark in potassium phosphate buffer, the PMF at pH 6 was -20 mV and was composed of an electrical potential (delta psi) only. At pH 7.9 the PMF was composed of a high delta psi of -98 mV and was partially compensated by a reversed pH gradient (delta pH) of +37 mV. ATPase inhibitors did not affect the delta psi, which was most likely the result of a K+ diffusion potential. Under energized conditions in the presence of K+ the delta psi depolarized due to electrogenic K+ uptake. This led to the generation of a delta pH (inside alkaline) in the external pH range of 6 to 8. This delta pH was dependent on the K+ concentration and was maximal at external K+ concentrations larger than 1.2 mM. In energized cells in 50 mM KPi buffer containing 5 mM MgSO4, a delta pH (inside alkaline) was present at external pHs from pH 6 to 8. As a result the overall magnitude of the PMF at various external pHs remained constant at -130 mV, which was significantly higher than the PMF under anaerobic-dark conditions. In the absence of K+, in 50 mM NaPi buffer containing 5 mM MgSO4, no depolarization of the delta psi was found and the PMF was composed of a large delta psi and a small delta pH. The delta pH became even reversed (inside acidic) at alkaline pHs (pH>7.3), resulting in a lowering of the PMF. These results demonstrate that in R. sphaeroides K+ uptake is essential for the generation of a delta pH and plays a central role in the regulation of the internal pH.  相似文献   

15.
The effect of the membrane potential (K(+)-valinomycin system) on the Mg2+, ATP-dependent transport of Ca2+ in inside-out vesicles of myometrium sarcolemma has been studied. The membrane potential was identified by using a cyanine potential-sensitive probe, diS-C3-(5). In the presence of valinomycin (5.10(-8) M) the inside-out directed K+ gradient (delta psi = -86 mV, with a negative charge inside) stimulated the initial rate of the energy-dependent accumulation of Ca2+ transfer whereas the oppositely directed K+ gradient (delta psi = +72 mV, with a positive charge inside) had no effect on this process. The K+ gradient was formed by isotonic substitution of K+ in intra- or extravesicular space for choline +. At the same time, in the absence of K+ gradient the Mg2+, ATP-dependent accumulation of Ca2+ in membrane vesicles did not depend on the chemical nature of the cations (K+ or choline+) used for isotonicity. The decrease of delta psi from 0 to -86 mV affects the initial rate of Ca2+ accumulation but not the maximal content of the accumulated cation. Preliminary dissipation of the membrane potential (delta psi = -86 mV) in Mg2(+)-free isotonic (with respect of K+ and choline+) media containing ATP and Ca2+ resulted in the inhibition of Mg2+, ATP-dependent Ca2+ transport induced by subsequent addition of Mg2+. These results indicate that the negative (intravesicular) electrical potential activates the Ca-pump of smooth muscle sarcolemma. This activation is based on the increase in the turnover number of the Ca2+ transporting system but not on its affinity for the transfer substrate. The use of the absolute reaction rates theory made it possible to establish that the Ca-pump effectuates the transport of a single positive charge in inside-out vesicles of smooth muscle plasma membranes, i.e., the energy-dependent transport of Ca2+ occurs either as a symport (with an anion (Cl-) or an antiport with a monovalent cation (K+) or a proton. It is assumed that the potential dependence of the Ca-pump in the smooth muscle plasma membrane plays a role in the realization of effects of mediators and physiologically active substances that are manifested as stimulation of the contractile response and depolarization of the sarcolemma. In is quite probable that the delta psi-dependent Ca-pump is also responsible for the maintenance of intracellular homeostasis of monovalent cations (K+, H+, Cl-) in smooth muscle tissues.  相似文献   

16.
The Na+/H+ antiporter of Bacillus alcalophilus was studied by measuring 22Na+ efflux from starved, cyanide-inhibited cells which were energized by means of a valinomycin-induced potassium diffusion potential, positive out (delta psi). In the absence of a delta psi, 22Na+ efflux at pH 9.0 was slow and appreciably inhibited by N-ethylmaleimide. Upon imposition of a delta psi, a very rapid rate of 22Na+ efflux occurred. This rapid rate of 22Na+ efflux was competitively inhibited by Li+ and varied directly with the magnitude of the delta psi. Kinetic experiments with B. alcalophilus and alkalophilic Bacillus firmus RAB indicated that the delta psi caused a pronounced increase in the Vmax for 22Na+ efflux. The Km values for Na+ were unaffected by the delta psi. Upon imposition of a delta psi at pH 7.0, a retardation of the slow 22Na+ efflux rate at pH 7.0 was caused by the delta psi. This showed that inactivity of the Na+/H+ antiporter at pH 7.0 was not secondary to a low delta psi generated by respiration at this pH. Indeed, 22Na+ efflux activity appeared to be inhibited by a relatively high internal proton concentration. By contrast, at a constant internal pH, there was little variation in the activity at external pH values from 7.0 to 9.0; at an external pH of 10.0, the rate of 22Na+ efflux declined. This decline at typical pH values for growth may be due to an insufficiency of protons when a diffusion potential rather than respiration is the driving force. Non-alkalophilic mutant strains of B. alcalophilus and B. firmus RAB exhibited a slow rate of 22Na+ efflux which was not enhanced by a delta psi at either pH 7.0 or 9.0.  相似文献   

17.
Using a potential-sensitive fluorescent probe diS-C3-(5), the formation of the membrane (K+-diffusion) potential, delta psi, in the myometrium sarcolemmal vesicular fraction was demonstrated. The magnitude of this potential corresponds to that calculated according to the Nernst equation, is time-stable (characteristic dissociation time--3-5 min) and temperature-dependent and is generated upon the substitution of the anion (Cl- for gluconate-) and the compensating cation (Na+ for Tris+, choline+). The change in delta psi from -61 to 0 mV leads to the activation of passive Ca2+ efflux from the vesicles (with choline+ as the compensating cation in the dilution medium). At the same value of the potential, i. e., -61 mV, the substitution of choline in the dilution medium for Na+ or Li+ stimulates the passive release of Ca2+. Co2+, Mn2+ and D-600 suppress this process by 15-20% in depolarized vesicles which points to the inhibition of Ca2+ release with an alteration of the membrane potential value from 0 to -61 mV (20%). The potential-dependent component of passive Ca2+ transport is characterized by saturation with the substrate (Km = 0.5 mM). The dependence of Ca2+ flux release from the sarcolemmal vesicles on the membrane potential value (-60-+27 mV) is bell-shaped and qualitatively relative to the volt-amper characteristics of the steady state Ca2+ flux in single smooth muscle cells. Analysis of experimental results revealed that the potential-dependent component of passive Ca2+ transport in myometrium sarcolemmal vesicles is determined by the non-activated Ca2+ conductivity of plasma membrane.  相似文献   

18.
Citrate is fermented by Klebsiella pneumoniae to 2 acetate, 0.5 formate and 1.2 CO2. The formation of less than 1 formate and greater than 1 CO2 per citrate can be accounted for by the oxidation of formate to CO2 in order to provide reducing equivalents for the assimilation of citrate into cell carbon. A membrane-bound electron transport chain is apparently involved in NADH synthesis by these cells. The electrons from formate oxidation to CO2 are used to reduce ubiquinone to ubiquinol by membrane-bound formate dehydrogenase and ubiquinol further delivers its electrons to NAD+, if this endergonic reaction is powered by delta mu Na+. The endogenous NADH level of K. pneumoniae cells thus increased in the presence of formate in response to a delta pNa+ greater than -100 mV. NADH formation was completely abolished in the presence of oxygen or after addition of hydroxyquinoline-N-oxide, a specific inhibitor of the Na(+)-translocating NADH:ubiquinone oxidoreductase. The increase of endogenous NADH was dependent on the delta pNa+ applied to the cells. Inverted membrane vesicles of K. pneumoniae catalysed the reduction of NAD+ to NADH with formate as electron donor after application of delta mu Na+ of about 120 mV consisting of delta pNa+ of 60 mV and delta psi of the same magnitude. Neither the delta pNa+ nor the delta psi of this size alone was sufficient to drive the endergonic reaction. Strictly anaerobic conditions were required for NADH formation and hydroxyquinoline-N-oxide completely inactivated the reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have studied the links between the mechanisms of Na(+), K(+) and H(+) movements in glycolysing Mycoplasma mycoides var. Capri cells. In the light of the results reported in the preceding paper [Benyoucef, Rigaud & Leblanc (1982) Biochem. J.208, 529-538], we investigated certain properties of the membrane-bound ATPase of Mycoplasma cells, with special reference to its ionic requirements and sensitivity to specific inhibitors. Our findings show, first, that, although Na(+) stimulated ATPase activity, K(+) did not affect it, and, secondly, that NN'-dicyclocarboidi-imide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD) were potent inhibitors of the basal ATPase activity, which was unaffected by vanadate and ouabain. We also investigated the movements of Na(+) and H(+) under the experimental conditions applied to the study of the K(+) uptake reported in the preceding paper, and found that when ;Na(+)-loaded cells' previously equilibrated with (22)Na(+) were diluted in a sodium-free medium, addition of glucose induced a rapid efflux of (22)Na(+). This energy-dependent efflux was independent of the presence of KCl in the medium. Studies of the changes in internal pH by 9-aminoacridine fluorescence or [(14)C]methylamine distribution indicated that the movement of Na(+) was coupled to that of protons moving in the opposite direction, a finding that supports the presence of an Na(+)/H(+) antiport. When Na(+)-loaded cells are diluted in an Na(+)-rich medium the Na(+)/H(+) antiport is still active, but cannot decrease the intracellular Na(+) concentration. Under such conditions, net (22)Na(+) extrusion is specifically dependent on the presence of K(+) in the medium. The present results and those derived from the study of K(+) accumulation (the preceding paper) can be rationalized by assuming that Mycoplasma mycoides var. Capri cells contain two transport systems for Na(+) extrusion: an Na(+)/H(+) antiport and an ATP-consuming Na(+)/K(+)-exchange system.  相似文献   

20.
The membrane potential (delta psi) of whole cells of Methanobacterium thermoautotrophicum strain delta H was estimated under different external conditions using a TPP(+)-sensitive electrode. The results show that the delta psi values of M. thermoautotrophicum at alkaline pHout (8.5) are comparable with delta psi values under slightly acidic conditions (pH 6.8; 230 and 205 mV, respectively). On the other hand, the size of colonies on Petri dishes was remarkably smaller at pH 8.5 than at 6.8. The delta psi was insensitive to relevant ATPase inhibitors. At pH 6.8, the protonophore 3,3',4',5-tetrachlorosalicylanilide (TCS) strongly inhibited delta psi formation and ATP synthesis driven by methanogenic electron transport. On the other hand, at pH 8.5 the CH4 formation and ATP synthesis were insensitive to TCS and a protonophore-resistant delta psi of approximately 150 mV was determined. The finding of a protonophore-resistant delta psi at pH 8.5 indicates that at alkaline pHout these cells can switch from H(+)-energetics to Na(+)-energetics, when the delta [symbol: see text] H+ becomes limited. The results strongly support the hypothesis that at alkaline pHout Na+ ions might fully substitute for H+ in these cells as the coupling ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号