首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pedal peptide (Pep) is a 15-amino-acid neuropeptide that is localized within the Aplysia central nervous system (CNS) predominantly to a broad band of neurons in each pedal ganglion. Pep-neurons were identified by intracellular staining and immunocytology or by radioimmunoassay (RIA) of extracts from identified neurons. RIA reveals that 97% of all Pep-like immunoreactivity (IR-Pep) in pedal nerves is found in the three nerves that innervate the foot. Nearly every Pep-neuron sends an axon out at least one of these three nerves. Application of Pep to foot muscle causes an increase in the amplitude and relaxation rate of contractions driven by nerve stimulation or intracellular stimulation of pedal motor neurons. The increase in relaxation rate was the predominant effect. Intracellular recording in "split-foot" preparations reveals that Pep-neurons increase their overall firing rates and fire in bursts with each step during locomotion. Recovery of IR-Pep from foot perfusate following pedal nerve stimulation increases in a frequency-dependent fashion. Thus it appears that one function of Pep-neurons is to modulate foot muscle contractility during locomotion in Aplysia.  相似文献   

2.
The right upper quadrant (RUQ) cells (R3-R13) of Aplysia regenerating in dissociated cell culture form unusually large growth cones. The movement of these growth cones was observed by time-lapse phase microscopy and their ultrastructure was examined by transmission electron microscopy. Their behavior and ultrastructure have features that are typical of growth cones in vitro. Additionally, they contain neurosecretory granules similar to those found in these cells in vivo. Because RUQ growth cones are large, they can be isolated by manual dissection. RUQ cells were grown in the presence of [35S]methionine and the labeled proteins transported to the growth cones were analyzed by SDS-PAGE. These proteins were compared to those in RUQ cell bodies, RUQ neurites, and to those in the neurites and cell bodies of other identified neurons grown in vitro. Most proteins synthesized by RUQ cells in vitro are transported to their growth cones, including several glycoproteins and the precursor to the R3-R14 neuropeptide. Neuropeptides are also synthesized by a number of other Aplysia neurons growing in vitro. We examined R2, LPL1, R15, and left upper quadrant neurons and found that their precursor peptides, like those of R3-R14, are readily recognized as major cell-specific radiolabeled bands on SDS gels. The presence in regenerating growth cones of neuropeptides, neurosecretory granules, and glycoproteins known to be rapidly transported toward synapses in vivo supports the emerging view that the growth cone in vitro contains not only a motility apparatus but also a macromolecular assembly capable of forming an active synapse immediately upon or shortly after contacting targets.  相似文献   

3.
Pedal peptide (Pep) is a very abundant neuropeptide in Aplysia. A radioimmunoassay (RIA) was developed to quantify Pep-like immunoreactivity (IR-Pep) in tissue extracts. IR-Pep was present in very high concentrations in the central nervous system (CNS) and two peripheral tissues: the large hermaphroditic duct (LHD) and the foot. RIA of fractions from high-pressure liquid chromatography (HPLC) indicated that Pep itself was the predominant immunoreactive species in each of these tissues. Lower concentrations of Pep were found in a number of other peripheral tissues. Incorporation of labelled amino acid indicated that Pep was synthesized in the LHD, whereas Pep in the foot was synthesized primarily in central neurons and transported to the foot. IR-Pep was further localized by immunocytology. All peripheral IR-Pep appeared to be associated with neuronal fibers, most commonly varicose axons. Immunoreactive innervation of the LHD and foot was particularly dense but positive staining was also observed in other tissues including tegument, gill, gut, and heart, IR-Pep innervation in all tissues including the LHD appeared to be localized predominantly in muscular portions of the tissue. Spontaneous contractions of isolated LHD were accelerated by the application of Pep. Pep appears to act as a transmitter or neuromodulator at a number of different sites in Aplysia.  相似文献   

4.
Pedal peptide (Pep) is a very abundant neuropeptide in Aplysia. A radioimmunoassay (RIA) was developed to quantify Pep-like immunoreactivity (IR-Pep) in tissue extracts. IR-Pep was present in very high concentrations in the central nervous system (CNS) and two peripheral tissues: the large hermaphroditic duct (LHD) and the foot. RIA of fractions from high-pressure liquid chromatography (HPLC) indicated that Pep itself was the predominant immunoreactive species in each of these tissues. Lower concentrations of Pep were found in a number of other peripheral tissues. Incorporation of labelled amino acid indicated that Pep was synthesized in the LHD, whereas Pep in the foot was synthesized primarily in central neurons and transported to the foot. IR-Pep was further localized by immunocytology. All peripheral IR-Pep appeared to be associated with neuronal fibers, most commonly varicose axons. Immunoreactive innervation of the LHD and foot was particularly dense but positive staining was also observed in other tissues including tegument, gill, gut, and heart. IR-Pep innervation in all tissues including the LHD appeared to be localized predominantly in muscular portions of the tissue. Spontaneous contractions of isolated LHD were accelerated by the application of Pep. Pep appears to act as a transmitter or neuromodulator at a number of different sites in Aplysia.  相似文献   

5.
We have modified the formaldehyde-glutaraldehyde (FaGlu) histofluorescence method of Furness, Costa, and Blessing (1977a) and Furness, Costa, and Wilson (1977b) to examine wholemounts and sections of both juvenile and adult ganglia as well as peripheral tissues of Aplysia californica. FaGlu fluorescence is the result of a reaction between formaldehyde and tissue catecholamines to produce water-insoluble (fixed) fluorophores. In serially sectioned cerebral ganglia, 70-80 positive neurons were observed (many in clusters of 10-20 cells), many more than were found using the glyoxylic acid technique. Catecholamine-containing varicosities were densely packed in localized portions of the neuropil of all central ganglia. Exclusive localization in the neuropil of presumed dopamine release sites is similar to that previously found for the neuropeptide SCP but differs from the widespread ramification of varicose neurites containing 5-HT, FMRFamide, and ELH. The FaGlu technique also enabled us to study the ultrastructure of catecholamine-containing neurons. In contrast to the larger vesicles found in serotonergic and histaminergic neurons, these dopaminergic neurons contain 70 nm dense-cored vesicles.  相似文献   

6.
《The Journal of cell biology》1990,111(6):2637-2650
We have generated a library of mouse monoclonal antibodies against membrane proteins of the nervous system of the marine snail Aplysia californica. Two of these antibodies, 4E8 and 3D9, recognize a group of membrane glycoproteins with molecular masses of 100-150 kD. We have called these proteins ap100, from the molecular mass of the most abundant species. Based on Western blots, these proteins appear to be specific for the nervous system. They are enriched in the neuropil of central nervous system ganglia, and are present on the surface of neurites and growth cones of neurons in culture. They are not expressed on the surface of nonneuronal cells. Staining of living cells with fluorescently labeled mAb demonstrates that the epitope(s) are on the outside of the cell. The antibodies against the proteins defasciculate growing axons and alter the morphology of growth cones, but affect much less adhesion between neuritic shafts. In addition, the level of expression of these molecules appears to correlate with the degree of fasciculation of neurites. These observations suggest that the ap100 proteins are cell adhesion molecules that play a role in axon growth in the nervous system of Aplysia. The fact that they are enriched in the neuropil and possibly in varicosities suggest that they may also be relevant for the structure of mature synapses.  相似文献   

7.
S Schacher  P G Montarolo 《Neuron》1991,6(5):679-690
FMRFamide evokes both short-term and long-term inhibition of synapses between mechanosensory and motor neurons in Aplysia. We report here, using dissociated cell culture and low-light epifluorescence video microscopy, that depression lasting 24 hr of sensorimotor synapses evoked by four brief applications of FMRFamide is accompanied by a significant loss of sensory cell varicosities and neurites. These structural changes in the sensory cells require the presence of the target motor cell L7. Because the loss of structures known to contain transmitter release sites correlates significantly with the changes in the amplitude of the excitatory postsynaptic potential in L7, our results suggest that the structural changes evoked by FMRFamide reflect a loss of synaptic contacts. Thus, long-term depression parallels long-term facilitation of the sensorimotor synapse produced by serotonin in that both forms of heterosynaptic plasticity involve target-dependent modulation of the number of presynaptic varicosities.  相似文献   

8.
The monosynaptic component of the neuronal circuit that mediates the withdrawal reflex of Aplysia californica can be reconstituted in dissociated cell culture. Study of these in vitro monosynaptic connections has yielded insights into the basic cellular mechanisms of synaptogenesis and long-term synaptic plasticity. One such insight has been that the development of the presynaptic sensory neurons is strongly regulated by the postsynaptic motor neuron. Sensory neurons which have been cocultured with a target motor neuron have more elaborate structures—characterized by neurites with more branches and varicosities—than do sensory neurons grown alone in culture or sensory neurons that have been cocultured with an inappropriate target cell. Another way in which the motor neuron regulates the development of sensory neurons is apparent when sensorimotor cocultures with two presynaptic cells are examined. In such cocultures the outgrowth from the different presynaptic cells is obviously segregated on the processes of the postsynaptic cell. By contrast, when two sensory neurons are placed into cell culture without a motor neuron, thier processes readily grow together. In addition to regulating the in vitro development of sensory neurons, the motor neuron also regulates learning-related changes in the structure of sensory neurons. Application of the endogenous facilitatory trasmitter serotonin (5-HT) causes long-term facilitation of in vitro sensorimotor synapses due in part to growth of new presynatpic varicosities. But 5-HT applied to sensory neurons alone in cultuer does not produce structural changes in these cells. More recently it has been found that sensorimotor synapses in cell culture can exhibit long-term potentiation (LTP). Like LTP of some hippocampal synapses, LTP of in vitro Aplysia syanpses is regulated by the voltage of the postsynaptic cell. Pairing high-frequency stimulation of sensory neurons with strong hyperpolarization of the motor neuron blocks the induction of LTP. Moreover, LTP of sensorimotor synapses can be induced in Hebbian fashion by pairing weak presynaptic stimulation with strong postsynaptic depolarization. These findings implicate a Habbian mechanism in classical conditioning in Aplysia. They also indicate that Hebbian LTP is a phylogenetically ancient form of synaptic plasticity. 1994 John Wiley & Sons, Inc.  相似文献   

9.
Lyles V  Zhao Y  Martin KC 《Neuron》2006,49(3):349-356
mRNA localization and regulated translation provide a means of spatially restricting gene expression within neurons during axon guidance and long-term synaptic plasticity. Here we show that synapse formation specifically alters the localization of the mRNA encoding sensorin, a peptide neurotransmitter with neurotrophin-like properties. In isolated Aplysia sensory neurons, which do not form chemical synapses, sensorin mRNA is diffusely distributed throughout distal neurites. Upon contact with a target motor neuron, sensorin mRNA rapidly concentrates at synapses. This redistribution only occurs in the presence of a target motor neuron and parallels the distribution of sensorin protein. Reduction of sensorin mRNA, but not protein, with dsRNA inhibits synapse formation. Our results indicate that synapse formation can alter mRNA localization within individual neurons. They further suggest that translation of a specific localized mRNA, encoding the neuropeptide sensorin, is required for synapse formation between sensory and motor neurons.  相似文献   

10.
Aplysia neurons grown in primary cell culture (Dagan and Levitan, 1981) were exposed to the putative neurotransmitters acetylcholine and serotonin by local iontophoretic application, and changes in membrane potential or voltage clamp currents were examined. It was found that 47% of the neurons were sensitive to cholinergic agonists, 14% to serotonin, and 9% responded to both. Responses could be recorded upon application of the transmitters to the cell bodies as well as along the regenerated neurites. An identified group of neurons, the neurosecretory bag cells, exhibited similar responses to cholinergic agonists in culture and in situ. Pleural medial neurons exhibited cholinergic responses in culture similar to those previously reported in situ. Thus neurotransmitter receptor/ion channel complexes characteristic for a specific cell type in the intact ganglion are also present on this cell type in culture.  相似文献   

11.
12.
Understanding the mechanisms that generate field potentials (FPs) by neurons grown on semiconductor chips is essential for implementing neuro-electronic devices. Earlier studies emphasized that FPs are generated by current flow between differentially expressed ion channels on the membranes facing the chip surface, and those facing the culture medium in electrically compact cells. Less is known, however, about the mechanisms that generate FPs by action potentials (APs) that propagate along typical non-isopotential neurons. Using Aplysia neurons cultured on floating gate-transistors, we found that the FPs generated by APs in cultured neurons are produced by current flow along neuronal compartments comprising the axon, cell body, and neurites, rather than by flow between the membrane facing the chip substrate and that facing the culture medium. We demonstrate that the FPs waveform generated by non-isopotential neurons largely depends on the morphology of the neuron.  相似文献   

13.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.  相似文献   

14.
This study was conducted to investigate effects of brain‐derived neurotrophic factor (BDNF) on the neurite growth of deutocerebral neurons in vitro, and production of BDNF‐like neuropeptide from brain of the silk moth, Bombyx mori. In primary culture of antennal lobe (AL) neurons with BDNF, it promoted a significant neurite extension of putative AL projection neurons and an outgrowth of branches from principal neurites of putative AL interneurons. Results from immunolabeling of brain and retrocerebral complex showed that BDNF ‐like neuropeptide labeled in brain was synthesized by median and lateral neurosecretory cells, then transported to corpora allata for storage.  相似文献   

15.
The neuroendocrine bag cell neurons of the marine mollusk Aplysia produce prolonged inhibition that lasts for more than 2 hr. We purified a peptide from the abdominal ganglion that mimics this inhibition. Mass spectrometry and microsequence analysis indicate that the peptide is 40 aa long and is amidated at its carboxyl terminus. It is highly homologous to vertebrate neuropeptide Y (NPY) and other members of the pancreatic polypeptide family. As determined from cloned cDNA, the gene coding for the precursor protein shares a common structural organization with genes encoding precursors of the vertebrate family. The peptides may therefore have arisen from a common ancestral gene. Bag cell neurons are immunoreactive for Aplysia NPY, and Northern blot analysis indicates that as with its vertebrate counterparts, the peptide is abundantly expressed in the CNS. This suggests that peptides related to NPY may have important functions in the nervous system of Aplysia as well as in other invertebrates.  相似文献   

16.
Abstract : Matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry is used to examine the formation of N -pyroglutamate (pGlu) in single, identified neurons from Aplysia . Six pGlu peptides are identified in the R3-14 and the R15 neurons that result from in vivo processing of peptides containing either Glu or Gln at their respective N-termini. Moreover, we show that Glu-derived pGlu is not a sample collection or measurement artifact. The pGlu peptides are detected in isolated cell bodies, regenerated neurites in culture, interganglionic connective nerves, cell homogenates, and collected releasates. We also demonstrate that R3-14 cells readily convert a synthetic N -Glu peptide to its pGlu analogue, indicating the presence of novel enzymatic activity.  相似文献   

17.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

18.
This study was conducted to investigate effects of brain-derived neurotrophic factor on the neurite growth and the survival rate of antennal lobe neurons in vitro, and secretion of brain-derived neurotrophic factor-like neuropeptide from brain into hemolymph in the silk moth, Bombyx mori. In primary culture of antennal lobe neurons with brain-derived neurotrophic factor, it promoted both a neurite extension of putative antennal lobe projection neurons and an outgrowth of branches from principal neurites of putative antennal interneurons with significance (p<0.05). Brain-derived neurotrophic factor also increased significantly a survival rate of antennal lobe neurons (p<0.05). Results from immunolabeling of brain and retrocerebral complex, and ELISA assay of hemolymph showed that brain-derived neurotrophic factor-like neuropeptide was synthesized by both median and lateral neurosecretory cells of brain, then transported to corpora allata for storage, and finally secreted into hemolymph for action. These results will provide valuable information for differentiation of invertebrate brain neurons with brain-derived neurotrophic factor.  相似文献   

19.
A key factor in the characterization of peptide transmitters used in neuronal signaling is the correct elucidation of post-translational modifications, especially as they are often required to confer biological activity. A rare carboxylation modification is described on the D-peptide from the insulin prohormone in the sea slug, Aplysia californica. Using liquid chromatography purification coupled with electrospray ionization and nanoelectrospray ionization-ion trap-mass spectrometry (ESI- and nanoESI-MS), the presence of this D-peptide within Aplysia insulin (AI)-producing neurons is confirmed. Further detailed mass spectrometric analyses demonstrate that the Aplysia insulin D-peptide is carboxylated on the single glutamate residue within the sequence. This gamma-carboxy D-peptide, along with other identified AI-related peptides, is secreted from the central nervous system in response to ionophore stimulation, thus suggesting a signaling role within the nervous system. Although carboxylated peptides have been described previously, the Aplysia gamma-carboxy D-peptide appears to be the first reported carboxylated neuropeptide.  相似文献   

20.
Formation of terminal synapses at sites such as the neuromuscular junction involves transformation of the motile growth cone into the nonmotile synaptic terminal. However, transformation does not need to be the mechanism when a neurite forms multiple widely spaced synaptic varicosities along a target in an en passant configuration. Synaptic varicosities could form here by specialization of the neurite after the growth cone has advanced past the site. We examined this issue by using cocultures of identified sensory (SN) and motor (L7) neurons from Aplysia. Living SNs were labeled with fluorescent dye and their neurites were observed at high resolution every few minutes growing along the axon of L7, allowing a fine-grained analysis of the behavior of the growth cone at the sites of synapse formation. All varicosities whose formation was observed indeed developed from the growth cone. Sensory varicosities were shown by electron microscopy to contain features characteristic of active zones for transmitter release within a day of their formation on the motor axon. Growth cone advance slowed or stopped transiently during varicosity formation, but the motile activity of the peripheral region of the growth cone (veils and filopodia) was maintained. These results suggest that target "stop signals" involved in the formation of synapses, at least of the en passant variety, may be of a different type from the growth inhibitory molecules, such as the collapsins, which guide axons to their targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号