首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-Tryptophan (L-Trp) is an essential amino acid. It is widely used in medical, health and food products, so a low-cost supply is needed. There are 4 methods for L-Trp production: chemical synthesis, extraction, enzymatic synthesis, and fermentation. In this study, we produced a recombinant bacterial strain pET-tnaA of Escherichia coli which has the L-tryptophanase gene. Using the pET-tnaA E. coli and the strain TS1138 of Pseudomonas sp., a one-pot enzymatic synthesis of L-Trp was developed. Pseudomonas sp. TS1138 was added to a solution of D,L-2-amino-delta2-thiazoline-4-carboxylic acid (DL-ATC) to convert it to L-cysteine (L-Cys). After concentration, E. coli BL21 (DE 3) cells including plasmid pET-tnaA, indole, and pyridoxal 5'-phosphate were added. At the optimum conditions, the conversion rates of DL-ATC and L-Cys were 95.4% and 92.1%, respectively. After purifying using macroporous resin S8 and NKA-II, 10.32 g of L-Trp of 98.3% purity was obtained. This study established methods for one-pot enzymatic synthesis and separation of L-Trp. This method of producing L-Trp is more environmentally sound than methods using chemical synthesis, and it lays the foundations for industrial production of L-Trp from DL-ATC and indole.  相似文献   

2.
Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Delta2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymatic activity assays were performed in vitro. It was found that the tsB gene encoded an L-ATC hydrolase, which catalyzed the conversion of L-ATC to L-SCC, while the tsC gene encoded an L-SCC amidohydrolase, which showed the catalytic ability to convert L-SCC to L-cysteine. These results suggest that tsB and tsC play important roles in the L-SCC pathway and L-cysteine biosynthesis in Pseudomonas sp. TS1138, and that they have potential applications in the industrial production of L-cysteine.  相似文献   

3.
DL-2-amino-Delta(2)-thiazolin-4-carbonic acid (DL-ATC) is a substrate for cysteine synthesis in some bacteria, and this bioconversion has been utilized for cysteine production in industry. We cloned a DNA fragment containing the genes involved in the conversion of L-ATC to L-cysteine from Pseudomonas sp. strain BS. The introduction of this DNA fragment into Escherichia coli cells enabled them to convert L-ATC to cysteine via N-carbamyl-L-cysteine (L-NCC) as an intermediate. The smallest recombinant plasmid, designated pTK10, contained a 2.6-kb insert DNA fragment that has L-cysteine synthetic activity. The nucleotide sequence of the insert DNA revealed that two open reading frames (ORFs) encoding proteins with molecular masses of 19.5 and 44.7 kDa were involved in the L-cysteine synthesis from DL-ATC. These ORFs were designated atcB and atcC, respectively, and their gene products were identified by overproduction of proteins encoded in each ORF and by the maxicell method. The functions of these gene products were examined using extracts of E. coli cells carrying deletion derivatives of pTK10. The results indicate that atcB and atcC are involved in the conversion of L-ATC to L-NCC and the conversion of L-NCC to cysteine, respectively. atcB was first identified as a gene encoding an enzyme that catalyzes thiazolin ring opening. AtcC is highly homologous with L-N-carbamoylases. Since both enzymes can only catalyze the L-specific conversion from L-ATC to L-NCC or L-NCC to L-cysteine, it is thought that atcB and atcC encode L-ATC hydrolase and N-carbamyl-L-cysteine amidohydrolase, respectively.  相似文献   

4.
The effects of anoxic conditions on product inhibition and the stability of L-ATC hydrolase were investigated in the conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (D,L-ATC) to L-cystine using the cell free extract enzyme of Pseudomonas sp. in the presence of hydroxylamine. At L-cysteine equivalent levels, where one mole of L-cystine was counted as two moles of L-cysteine, L-cystine inhibited the L-ATC hydrolase reaction to a greater extent than L-cysteine. In air, the product occurred predominantly as L-cystine (94.9%), whereas in a nitrogen atmosphere the product occured as a mixture of L-cysteine (39.3%) and L-cystine (40.7%). As a result, less product inhibition took place in nitrogen. The activity of L-ATC hydrolase was almost fully lost after 20 h of incubation by shaking at 30 °C in air, but considerable activity remained under the anoxic conditions of nitrogen. A kinetic analysis of the reactions confirmed that reduced product inhibition and enhanced enzyme stability in nitrogen result in a more efficient enzyme reaction. The inactivation rate constant (k1) was estimated to be 0.11 h?1 in nitrogen and 0.22?1 in air, indicating that the stability of L-ATC hydrolase in nitrogen was greater than in air. The values of the Kp1 and Kp2 constants related to product inhibition were 43.36 mM and 30.48 mM for L-cysteine and L-cystine, respectively, where higher values were an indication of less product inhibition. The value of the rate constant (k2) for the oxidation of L-cysteine to L-cystine was 0.09 h?1 in nitrogen and 1.01 h?1 in air, suggesting that the oxidation of L-cysteine to L-cystine proceeds faster in air than in nitrogen.  相似文献   

5.
The M1 strain, able to grow on beta-myrcene as the sole carbon and energy source, was isolated by an enrichment culture and identified as a Pseudomonas sp. One beta-myrcene-negative mutant, called N22, obtained by transposon mutagenesis, accumulated (E)-2-methyl-6-methylen-2,7-octadien-1-ol (or myrcen-8-ol) as a unique beta-myrcene biotransformation product. This compound was identified by gas chromatography-mass spectrometry. We cloned and sequenced the DNA regions flanking the transposon and used these fragments to identify the M1 genomic library clones containing the wild-type copy of the interrupted gene. One of the selected cosmids, containing a 22-kb genomic insert, was able to complement the N22 mutant for growth on beta-myrcene. A 5,370-bp-long sequence spanning the region interrupted by the transposon in the mutant was determined. We identified four open reading frames, named myrA, myrB, myrC, and myrD, which can potentially code for an aldehyde dehydrogenase, an alcohol dehydrogenase, an acyl-coenzyme A (CoA) synthetase, and an enoyl-CoA hydratase, respectively. myrA, myrB, and myrC are likely organized in an operon, since they are separated by only 19 and 36 nucleotides (nt), respectively, and no promoter-like sequences have been found in these regions. The myrD gene starts 224 nt upstream of myrA and is divergently transcribed. The myrB sequence was found to be completely identical to the one flanking the transposon in the mutant. Therefore, we could ascertain that the transposon had been inserted inside the myrB gene, in complete agreement with the accumulation of (E)-2-methyl-6-methylen-2,7-octadien-1-ol by the mutant. Based on sequence and biotransformation data, we propose a pathway for beta-myrcene catabolism in Pseudomonas sp. strain M1.  相似文献   

6.
7.
Pseudomonas sp. strain NS671, which produces L-amino acids asymmetrically from the corresponding racemic 5-substituted hydantoins, harbored a plasmid of 172 kb. Curing experiments suggest that this plasmid, designated pHN671, is responsible for the conversion of 5-substituted hydantoins to their corresponding L-amino acids by strain NS671. DNA fragments containing the genes involved in this conversion were cloned from pHN671 in Escherichia coli by using pUC18 as a cloning vector. The smallest recombinant plasmid, designated pHPB12, contained a 7.5-kb insert DNA. The nucleotide sequence of the insert DNA was determined, and three closely spaced open reading frames predicted to encode peptides with molecular masses of 75.6, 64.9, and 45.7 kDa were found. These open reading frames were designated hyuA, hyuB, and hyuC, respectively. Cell extracts from E. coli carrying deletion derivatives of pHPB12 were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the gene products of hyuA, hyuB, and hyuC were identified. The functions of these gene products were also examined with the deletion derivatives. The results indicate that both hyuA and hyuB are involved in the conversions of D- and L-5-substituted hydantoins to corresponding N-carbamyl-D- and N-carbamyl-L-amino acids, respectively, and that hyuC is involved in the conversion of N-carbamyl-L-amino acids to L-amino acids.  相似文献   

8.
The induction of 2-amino-Delta(2)-thiazoline-4-carboxylic acid hydrolase (ATCase) and N-carbamoylcysteine amidohydrolase (NCCase), both of which are involved in the conversion step of 2-amino-Delta(2)-thiazoline carboxylic acid (ATC) to cysteine, was studied with Pseudomonas putida AJ3865. We found that L-ATC induced L-ATCase and L-NCCase, but that D-ATC induced only L-NCCase, whereas L- or D-NCC and thiazoline derivatives did not induce both enzymes. The bacterium showed neither D-ATCase nor D-NCCase activities, indicating that the role of L-ATC and D-ATC was different in the enzyme induction. We also found new inducers, d- and l-methionine, S-methyl-L-cysteine, cysteic acid, and 2-aminoethane sulfonic acid. However, the induction level of both enzymes by new inducers was much lower than those by L-ATC and D-ATC. Furthermore, the induction rate of both enzymes was synergistically increased only under a combination of D,L-ATC and new inducers. S-Compounds, however, such as new inducers except S-methyl-L-cysteine, inhibited both enzyme activities. This is the first report on the new inducers, synergistic induction, and the new inhibitors of L-ATCase and L-NCCase.  相似文献   

9.
Two genes involved in the degradation of biphenyl were isolated from a gene library of a polychlorinated biphenyl-degrading soil bacterium, Pseudomonas sp. strain KKS102, by using a broad-host-range cosmid vector, pKS13. When a 3.2-kilobase (kb) PstI fragment of a 29-kb cosmid DNA insert was subcloned into pUC18 at the PstI site downstream of the lacZ promoter, Escherichia coli cells carrying this recombinant plasmid expressed 2,3-dihydroxybiphenyl dioxygenase activity. Nucleotide sequencing of the 3.2-kb PstI fragment revealed that there were two open reading frames (ORFI [882 base pairs] and ORFII [834 base pairs], in this gene order). Results of analysis of Tn5 insertion mutants and unidirectional deletion mutants suggested that the ORFI coded for 2,3-dihydroxybiphenyl dioxygenase. When the sequence of ORFI was compared with that of bphC of Pseudomonas pseudoalcaligenes KF707 (K. Furukawa, N. Arima, and T. Miyazaki, J. Bacteriol. 169:427-429, 1987), the homology was 68%, with both strains having the same Shine-Dalgarno sequence. The result of gas chromatography-mass spectrometry analysis of the metabolic product suggested that the ORFII had meta cleavage compound hydrolase activity to produce benzoic acid. DNA sequencing suggested that these two genes were contained in one operon.  相似文献   

10.
N-carbamoyl-l-cysteine amidohydrolase (NCC amidohydrolase) was purified and characterized from the crude extract of Escherichia coli in which the gene for NCC amidohydrolase of Pseudomonas sp. strain ON-4a was expressed. The enzyme was purified 58-fold to homogeneity with a yield of 16.1% by three steps of column chromatography. The results of gel filtration on Sephacryl S-300 and SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a tetramer protein of identical 45-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 9.0 and 50°C, respectively. The enzyme required Mn2+ ion for activity expression and was inhibited by EDTA, Hg2+ and sulfhydryl reagents. The enzyme was strictly specific for the l-form of N-carbamoyl-amino acids as substrates and exhibited high activity in the hydrolysis of N-carbamoyl-l-cysteine as substrate. These results suggested that the NCC amidohydrolase is a novel l-carbamoylase, different from the known l-carbamoylases.  相似文献   

11.
The genes specifying the utilization of 3-chlorobenzoate by Pseudomonas sp. strain B13 WR1 have been cloned by using a broad-host-range cosmid cloning system. Analysis of the catabolic products of the enzymatic reactions encoded by two hybrid cosmids, pMW65 and pMW90, by thin-layer and high-performance liquid chromatography demonstrated that both encoded the genes for the complete catabolism of 3-chlorobenzoate. Physical analysis of one of the cosmid derivatives, pMW65, by restriction endonuclease mapping and subcloning demonstrated that the pathway genes are encoded on a fragment no larger than 11 kilobases.  相似文献   

12.
13.
Pseudomonas sp. strain SJT25, which strongly antagonizes plant pathogens, was isolated from rice rhizosphere soil by a bioactivity-guided approach. A novel antiphytopathogenic compound was isolated from the fermentation broth of Pseudomonas sp. SJT25 and identified as 2-heptyl-5-hexylfuran-3-carboxylic acid. This compound showed antimicrobial activities both in vitro and in vivo.  相似文献   

14.
Microbial transformation of homocholine plays a central role in many biological systems and influence on all kingdoms of life. Here, we used suppression subtractive hybridization (SSH) approach to screen for genes that differentially expressed in response to homocholine by Pseudomonas sp. strain A9 and to gain deep acknowledge about the gene expression and sequences of homocholine degrading enzymes. Twenty-seven differentially expressed genes were identified and were found to involve in the uptake and metabolism of homocholine as well as physiological responses of strain A9 to this compound. Of them, fragments of homocholine dehydrogenase (hcdH), β-alanine betaine aldehyde dehydrogenase (bABALDH), β-alaninebetaine CoA transferase (hcdD), 3-hydroxypropionate dehydrogenase (hcdB), and malonate semialdehyde dehydrogenase (hcdC) genes were detected. After excessive experiments of PCR and sequencing, the full-length sequences of these key genes were identified. Interestingly, a complete sequence of a unique gene cluster (6.2 kbp) of hcd (homocholine degrading) genes that contain the genes hcdD, hcdB, hcdC, and hcdR was obtained. The sequence information of these essential genes will enhance our understanding of homocholine catabolic pathway in microorganisms and will help in identifying better inhibitors or activators of these enzymes to either improve or suppress their activity depending on the importance of the formed metabolite.  相似文献   

15.
Moraxella lacunata is a bacterium that is a causative agent of human conjunctivitis and keratitis. We have previously cloned the Q and I pilin (formerly called beta and alpha pilin) genes of Moraxella bovis and determined that an inversion of 2 kilobases (kb) of DNA determines which pilin gene is expressed. Using an M. bovis pilin gene as a hybridization probe to screen a lambda ZAP library of M. lacunata DNA, we have isolated a clone that not only contains the entire type 4 pilin gene inversion region of M. lacunata but inverts the 2-kb region on a plasmid subclone (pMxL1) in Escherichia coli. Deletion derivatives of pMxL1 yielded some plasmids that still had the entire inversion region but were phase locked into one or the other of the two potential orientations. Similarly, insertions of a 2-kb streptomycin-resistant element (omega) within some regions outside of the inversion also resulted in phase-locked plasmids. These deletions and insertions thus localize a probable invertase necessary for the inversion event. The region was sequenced, and an open reading frame with over 98% DNA sequence homology to an open reading frame that we previously found in M. bovis and called ORF2 appeared to be a strong candidate for the invertase. This conclusion was confirmed when a plasmid containing the M. bovis ORF2 supplied, in trans, the inversion function missing from one of the M. lacunata phase-locked inversion mutants. We have named these putative invertase genes piv(ml) (pilin inversion of M. lacunata) and piv(mb) (pilin inversion of M. bovis). Despite previously noted sequence similarities between the M. bovis sites of inversion and those of the Hin family of invertible segments and a 60-base-pair region within the inversion with 50% sequence similarity to the cin recombinational enhancer, there is no significant sequence similarity of the Piv invertases to the Hin family of invertases.  相似文献   

16.
We have determined the nucleotide sequence of the gene encoding thermostable L-2-halo acid dehalogenase (L-DEX) from the 2-chloroacrylate-utilizable bacterium Pseudomonas sp. strain YL. The open reading frame consists of 696 nucleotides corresponding to 232 amino acid residues. The protein molecular weight was estimated to be 26,179, which was in good agreement with the subunit molecular weight of the enzyme. The gene was efficiently expressed in the recombinant Escherichia coli cells: the amount of L-DEX corresponds to about 49% of the total soluble proteins. The predicted amino acid sequence showed a high level of similarity to those of L-DEXs from other bacterial strains and haloacetate dehalogenase H-2 from Moraxella sp. strain B (38 to 57% identity) but a very low level of similarity to those of haloacetate dehalogenase H-1 from Moraxella sp. strain B (10%) and haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (12%). By searching the protein amino acid sequence database, we found two E. coli hypothetical proteins similar to the Pseudomonas sp. strain YL L-DEX (21 to 22%).  相似文献   

17.
DL-2-Haloacid dehalogenase from Pseudomonas sp. strain 113 (DL-DEX) catalyzes the hydrolytic dehalogenation of both D- and L-2-haloalkanoic acids to produce the corresponding L- and D-2-hydroxyalkanoic acids, respectively, with inversion of the C2 configuration. DL-DEX is a unique enzyme: it acts on the chiral carbon of the substrate and uses both enantiomers as equivalent substrates. We have isolated and sequenced the gene encoding DL-DEX. The open reading frame consists of 921 bp corresponding to 307 amino acid residues. No sequence similarity between DL-DEX and L-2-haloacid dehalogenases was found. However, DL-DEX had significant sequence similarity with D-2-haloacid dehalogenase from Pseudomonas putida AJ1, which specifically acts on D-2-haloalkanoic acids: 23% of the total amino acid residues of DL-DEX are conserved. We mutated each of the 26 residues with charged and polar side chains, which are conserved between DL-DEX and D-2-haloacid dehalogenase. Thr65, Glu69, and Asp194 were found to be essential for dehalogenation of not only the D- but also the L-enantiomer of 2-haloalkanoic acids. Each of the mutant enzymes, whose activities were lower than that of the wild-type enzyme, acted on both enantiomers of 2-haloacids as equivalent substrates in the same manner as the wild-type enzyme. We also found that each enantiomer of 2-chloropropionate competitively inhibits the enzymatic dehalogenation of the other. These results suggest that DL-DEX has a single and common catalytic site for both enantiomers.  相似文献   

18.
DNA fragments containing the genes involved in the conversion of 5-substituted hydantoins to their corresponding L-amino acids have been cloned from the 172-kb native plasmid (pHN671) of Pseudomonas sp. strain NS671. The largest recombinant plasmid, designated pHPB14, encoded the ability to convert D-5-substituted hydantoins to the corresponding L-amino acids, whereas the smallest one, designated pHPB12, encoded the ability to convert them to their corresponding N-carbamyl-D-amino acids. Restriction analysis suggested that the inserts of both recombinant plasmids are derived from the identical portion in pHN671 and that the insert of pHPB14, compared with that of pHPB12, has an extra 5.3 kb in length. DNA sequencing revealed that pHPB14 contains two additional complete open reading frames, designated ORF5 and hyuE. Analysis of deletion derivatives of pHPB14 indicated that hyuE is required for the ability to produce L-amino acids from the corresponding D-5-substituted hydantoins, but ORF5 is not. Cells of Escherichia coli transformed with a plasmid containing hyuE were capable of racemizing different 5-substituted hydantoins, indicating that hyuE is a gene encoding a hydantoin racemase.  相似文献   

19.
Genes involved in the production of phaseolotoxin by Pseudomonas syringae pv. "phaseolicola" NPS3121 were identified by Tn5 mutagenesis and cosmid cloning. A total of 5,180 kanamycin-resistant colonies were screened for the loss of phaseolotoxin production by a microbiological assay. Six independent, prototrophic, Tox- mutants were isolated that had Tn5 insertions in five different EcoRI fragments. All six mutants had Tn5 inserted in the same KpnI fragment, which had a length of ca. 28 kilobases including Tn5. The mutants produced residual toxin in vitro. An EcoRI fragment containing Tn5 and flanking sequences from mutant NPS4336 was cloned and used to probe a wild-type genomic library by colony hybridization. Seven recombinant plasmids showing homology to this probe were identified. Each Tox- mutant was restored in OCTase-specific toxin production by two or more of the recombinant plasmids. The data suggest that at least some of the genes involved in phaseolotoxin production were clustered in a large KpnI fragment. No homology was detected between the Tn5 target fragment cloned from mutant NPS4336 and the total genomic DNA from closely or distantly related bacteria that do not produce phaseolotoxin.  相似文献   

20.
The release of malachite green, a commonly used triphenylmethane dye, into the environment is causing increasing concern due to its toxicity, mutagenicity, and carcinogenicity. A bacterial strain that could degrade malachite green was isolated from the water of an aquatic hatchery. It was identified as a Pseudomonas sp. based on the morphological, physiological, and biochemical characteristics, as well as the analysis of 16S rRNA gene sequence and designated as MDB-1. This strain was capable of degrading both malachite green and leucomalachite green, as well as other triphenylmethane dyes including Crystal Violet and Basic Fuchsin. The gene tmr2, encoding the triphenylmethane reductase from MDB-1, was cloned, sequenced and effectively expressed in E. coli. These results highlight the potential of this bacterium for the bioremediation of aquatic environments contaminated by malachite green.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号