首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants resistant to nikkomycin, an inhibitor of chitin biosynthesis, were isolated after exposure of wild-type spores of the fungus Phycomyces blakesleeanus to N-methyl-N-nitro-N-nitrosoguanidine. Genetic analysis revealed that nikkomycin resistance was due to mutations in a single gene, chsA. Mutants and wild type grew equally well in the absence of nikkomycin. In contrast to the wild type, whose spore germination and mycelial growth were inhibited by 5 M nikkomycin, chsA mutants grew reasonably well in the presence of 50 M nikkomycin. Chitin synthesis in vivo was much less affected by the drug in the mutants than in the wild type. Resistance was not due to impaired uptake or detoxification of the drug. Analysis of the kinetics of chitin synthesis in vitro showed that the mutants had a decreased Ka for the allosteric activator, N-acetylglucosamine, and gross alterations in nikkomycin inhibition kinetics. These results indicate that chsA is the structural gene for chitin synthetase, or at least for the polypeptide that bears the catalytic and allosteric sites.  相似文献   

2.

Background  

Nikkomycins are a group of peptidyl nucleoside antibiotics and act as potent inhibitors of chitin synthases in fungi and insects. Nikkomycin X and Z are the main components produced by Streptomyces ansochromogenes. Of them, nikkomycin Z is a promising antifungal agent with clinical significance. Since highly structural similarities between nikkomycin Z and X, separation of nikkomycin Z from the culture medium of S. ansochromogenes is difficult. Thus, generating a nikkomycin Z selectively producing strain is vital to scale up the nikkomycin Z yields for clinical trials.  相似文献   

3.
Rylux BSU and Congo red bind to chitin, interfere with proper cell-wall assembly, and stimulate chitin synthesis by increasing, most probably, chitin synthase 3 (ChS3) levels inSaccharomyces cerevisiae. On the other hand, the antibiotic nikkomycin Z inhibits chitin synthesis competitively. As ChS3 is the critical target of nikkomycin Z, its effect was tested in cells inhibited in growth by Rylux BSU or Congo red. Nikkomycin Z counteracted this inhibition but did not counteract aberrant cell-wall formation. These results indicate that chitin synthesis stimulation is the key step in Rylux BSU and Congo red inhibition and support the idea that increase in chitin synthesis represents a compensatory response to damaged cell-wall structure. As Rylux BSU and Congo red bind to newly synthesized chitin, further damage is caused in the wall and the response works in this case contrariwise. Nikkomycin Z breaks this vicious circle by counteracting the chitin synthesis stimulation.  相似文献   

4.
Xie Z  Niu G  Li R  Liu G  Tan H 《Current microbiology》2007,55(6):537-542
Nikkomycins are highly potent inhibitors of chitin synthase. The nikkomycin biosynthetic gene cluster has been cloned from Streptomyces asochromogenes. Two cytochrome P450 monooxygenase genes (sanQ, sanH) and one ferredoxin gene (sanI) were found in the cluster. It was reported that SanQ is involved in the hydroxylation of l-His, a key step in 4-formyl-4-imidazolin-2-one base biosynthesis. Here, we have studied the function of sanH and sanI. Disruption of sanH abolished the production of nikkomycin X and Z, but it accumulated one dominant component nikkomycin Lx, which is the nikkomycin X analog lacking the hydroxy group at the pyridyl residue. The sanI disruption mutant accumulated predominantly nikkomycin Lx in addition to nikkomycin X and Z. The nikkomycin production profile of the sanH and sanI double disruption mutant was the same as that of the sanH disruption mutant. These results confirmed that SanH is essential for the hydroxylation of pyridyl residue in nikkomycin biosynthesis of S. ansochromogenes and first demonstrated that SanI is an effective electron donor for SanH, but not for SanQ in vivo.  相似文献   

5.
Mutants resistant to nikkomycin, an inhibitor of chitin biosynthesis, were isolated after exposure of wild-type spores of the fungus Phycomyces blakesleeanus to N-methyl-N′-nitro-N-nitrosoguanidine. Genetic analysis revealed that nikkomycin resistance was due to mutations in a single gene, chsA. Mutants and wild type grew equally well in the absence of nikkomycin. In contrast to the wild type, whose spore germination and mycelial growth were inhibited by 5 μM nikkomycin, chsA mutants grew reasonably well in the presence of 50 μM nikkomycin. Chitin synthesis in vivo was much less affected by the drug in the mutants than in the wild type. Resistance was not due to impaired uptake or detoxification of the drug. Analysis of the kinetics of chitin synthesis in vitro showed that the mutants had a decreased Ka for the allosteric activator, N-acetylglucosamine, and gross alterations in nikkomycin inhibition kinetics. These results indicate that chsA is the structural gene for chitin synthetase, or at least for the polypeptide that bears the catalytic and allosteric sites.  相似文献   

6.
Nikkomycin Z inhibits chitin synthase in vitro but does not exhibit antifungal activity against many pathogens. Assays of chitin synthase isozymes and growth assays with isozyme mutants were used to demonstrate that nikkomycin Z is a selective inhibitor of chitin synthase 3. The resistance of chitin synthase 2 to nikkomycin Z in vitro is likely responsible for the poor activity of this antibiotic against Saccharomyces cerevisiae.  相似文献   

7.
Chitin synthase from Coprinus cinereus (Schaeff. ex Fr.) S. F. Gray (= C. lagopus sensu Buller) was used as a model for chitin synthase from insects. The effect of dimilin (difluorobenzuron), captan (trichloromethylsulfonyl fungicide), kitazin P (organophosphorus ester fungicide) and parathion (organophosphorus insecticide) on the fungal enzyme was compared with the effect of nikkomycin (nucleoside-peptide antibiotic).Metabolic products of microorganisms. 180. M. Brufani, L. Celai, W. Keller-Schierlein, E. Pretsch: Revised structure of naphthomycin. J. Antibiot. (Tokyo) (in press)  相似文献   

8.
The effect of the nucleoside-peptide antibiotics nikkomycin Z, nikkomycin X, and polyoxin A was tested on chitosomal chitin synthetase from yeast cells of the dimorphic fungus Mucor rouxii. The K i was 0.6 M for polyoxin A and 0.5 M for nikkomycin X; nikkomycin Z was slightly less inhibitory (K i=3.5M). Whereas the minimum inhibitory concentrations of the nikkomycins for growth and germination were quite low (about 1M, or lower), polyoxin A displayed no antifungal activity against yeast cells and sporangiospores of the test organism, even when present in high concentrations. These results are discussed with respect to structure/activity relationships.Abbreviations MIC minimum inhibitory concentration (i.e. concentration required to completely suppress growth: cf. Drews, 1979) - GlcNAc N-acetyl-d-glucosamine - UDP-GlcNAc uridine 5-diphospho-N-acetyl-d-glucosamine Metabolic products of microorganisms. 202. H. P. Kaiser and W. Keller-Schierlein: Strukturaufklärung von Elaiophylin: Spektroskopische Untersuchungen und Abbau. Helv. Chim. Acta 64: 407–424 (1981)  相似文献   

9.
Mutation affecting peptide bond formation in nikkomycin biosynthesis   总被引:1,自引:0,他引:1  
Nikkomycin, a nucleoside-peptide analog of UDP-N-acetylglucosamine, is a potent chitin synthase inhibitor produced by the bacterium Streptomyces tendae. The HPLC profile of fermentation products in culture broths of a non-producing mutant, Nik 15, was compared with nikkomycin standards. Nikkomycin C and D, the glycone and aglycone moieties, respectively, of nikkomycin Z accumulated. This indicates the mutation affects the capacity to form a peptide bond between nikkomycin C and D, which is here proposed to be the terminal step in the synthesis of the biologically active nikkomycin Z. This is also the first documented case of a mutation affecting a specific step in nikkomycin biosynthesis.  相似文献   

10.
The inhibitory effects of nikkomycin, polyoxin B, and UDP were tested on particulate chitin synthetase activity (UDP-2-acetamido-2-deoxy-D-glucose: chitin-4-B-acetamidodeoxy-D-glucosyltransferase, E.C.2.4.1.16) fromNeurospora crassa. Two approaches were used: (a) inhibitors were tested for their individual effects on chitin synthetase activity; (b) paired combinations of inhibitors were examined to establish whether the compounds affected inhibition by binding at the same enzyme site. The first method showed that the three compounds are linear competitive inhibitors, i.e. each competes directly with the substrate for binding. Ki app values were: UDP, 0.8 mM; polyoxin B, 32 M; and nikkomycin, 2 M. The second method showed that the inhibitors compete with each other for binding; thus they bind at the same site. The pyrimidine nucleoside moiety of these inhibitors is an essential component for effective inhibition, but the potency of inhibition is critically dependent on the conformation of the side group attached to carbon 5 of the ribose sugar.  相似文献   

11.
Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.  相似文献   

12.
Fluconazole, ketoconazole and tioconazole were shown to act synergistically in vitro with the antibiotic nikkomycin X/Z on the pathogenic fungus Candida albicans. The phenomenon was demonstrated using a checkerboard technique and growth inhibition experiments. The azole antifungal agents, even at concentrations not affecting growth, decreased the incorporation of the 14C-label from [14C]glucose into chitin of the candidal cell wall. After 3 h incubation with tioconazole, 1 microgram ml-1, the incorporation of the radiolabelled glucose into chitin of intact cells and regenerating spheroplasts of C. albicans was inhibited by 43% and 30%, respectively. Moreover, the relative chitin content was approximately 45% lower than that of control cells. The chitin content increased after prolonged incubation with azoles, thus confirming the known phenomenon of azole-induced uncoordinated chitin synthesis and deposition. On the other hand, azole derivatives had very little effect on the rate of nikkomycin transport into C. albicans cells. A sequential blockade mechanism of synergism is proposed.  相似文献   

13.
Li W  Liu G  Tan H 《Biotechnology letters》2003,25(18):1491-1497
The gene, sabR, encoding a receptor for -butyrolactone, was cloned from the genomic DNA of Streptomyces ansochromogenes 7100. Its deduced protein shows strong homology to several -butyrolactone-binding proteins in Streptomyces. Disruption of sabR retarded nikkomycin production in liquid media containing glucose or glycerol as carbon source. Sporulation of sabR disruption mutants was earlier than the parent strain on solid media with glucose or glycerol as carbon source. However, disruption of sabR had no effect on either nikkomycin production or sporulation on media containing mannitol as carbon source, suggesting that sabR is a pleiotropic regulatory gene that controls the onset of nikkomycin production and sporulation in S. ansochromogenes and is related to the utilization of carbon source.  相似文献   

14.
B. K. Dutta  I. Isaac 《Plant and Soil》1979,53(1-2):99-103
Summary Organic (e.g. chitin, green manure, cellulose) amendments to soil induced quantitative and qualitative changes in the rhizosphere microflora of antirrhinum plants infected withVerticillium dahliae Kleb. Whereas reduction in disease severity occurred with chitin and green manure amendments, an increase in disease severity was observed with the application of cellulose. The reduction of the disease severity with chitin and green manure may be correlated with the increased population of actinomycetes in the antirrhinum rhizosphere.  相似文献   

15.
A reversed-phase, C-18 HPLC method for separation, with baseline resolution, of the chitin synthase inhibitors nikkomycin X and Z is described. This permits, for the first time, satisfactory identification of nikkomycin X and Z contained in a mixture. The use of 30 mM ammonium formate (pH 4.7) containing the ion-pair agent heptanesulfonic acid (1 mM) was critical for the successful separation of these fungicides.  相似文献   

16.
A series of novel nikkomycin analogs, which inhibited chitin synthase, the fungal cell wall biosynthesis enzyme, has been synthesized and evaluated their inhibitory activities.  相似文献   

17.
Chitin formation depends on the activity of a family II glycosyltransferase known as chitin synthase, whose biochemical and structural properties are largely unknown. Previously, we have demonstrated that the chitin portion of the peritrophic matrix in the midgut of the tobacco hornworm, Manduca sexta, is produced by chitin synthase 2 (CHS-2), one of two isoenzymes encoded by the Chs-1 and Chs-2 genes (also named Chs-A and Chs-B), and that CHS-2 is located at the apical tips of the brush border microvilli. Here we report the purification of the chitin synthase from the Manduca midgut as monitored by its activity and immuno-reactivity with antibodies to the chitin synthase. After gel permeation chromatography, the final step of the developed purification protocol, the active enzyme eluted in a fraction corresponding to a molecular mass between 440 and 670 kDa. Native PAGE revealed a single, immuno-reactive band of about 520 kDa, thrice the molecular mass of the chitin synthase monomer. SDS-PAGE and immunoblotting indicated finally that an active, oligomeric complex of the chitin synthase was purified. In summary, the chitin synthase from the midgut of Manduca may prove to be a good model for investigating the enzymes' mode of action.  相似文献   

18.
Labeled UDP-GlcNAc and chitooligosaccharides should be powerful tools for studies of N-acetylglucosaminyltransferase such as chitin synthases. We describe here a rapid, inexpensive and a common strategie for the chemoenzymatic synthesis of uridine 5′-diphospho-N-[2H]-acetyl-glucosamine and the chemical preparation of N-[2H]-acetyl chitooligosaccharides (from 2 to 5 mers). Deuterated UDP-GlcNAc analogue was tested as chitin synthase substrate and it exhibited an incorporation level in chitin as the natural substrate. Deuterium labeling of carbohydrates present different advantages: it is a stable isotope and allows glycosyltransferase mechanism studies by a mass spectrometry approach.  相似文献   

19.
Summary In contrast to all filamentous fungi examined to date, vegetative hyphae ofAllomyces macrogynus, whether extending or not, produced an outward flow of positive electrical current, at a maximum of 0.16 A cm–2 around 40 m behind the apex, as measured with a vibrating probe. Inward currents of up to 0.55 A cm–2 were recorded around the rhizoids. Increases in outward current were observed in hyphae pre-grown under oxygen deficiency and then allowed to widen backwards to the hyphal base in sufficient oxygen. When spores were germinated in an applied electrical field they produced rhizoids predominantly towards the anode. Hyphae were produced initially towards the cathode but later bent around towards the anode. Experiments with a range of chemicals provided no evidence for the involvement of calcium in vegetative growth and development inA. macrogynus. Polyoxin and nikkomycin, inhibitors of chitin synthesis, had no effect on swimming zoospores, but inhibited wall formation of cysts, rhizoids and forward and backward growing hyphae.  相似文献   

20.
Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号