首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vascular inflammation underlies the pathogenesis of atherosclerosis. Atherosclerotic changes in the vasculature lead to conditions such as coronary artery disease and stroke, which are the major causes of morbidity and mortality worldwide. Epidemiological studies in premenopausal women suggest a beneficial role for estrogen in preventing vascular inflammation and consequent atherosclerosis. However, the benefits of estrogen areabsent or even reversed in older postmenopausal subjects. The modulation of inflammation by estrogen under different conditions might explain this discrepancy. Estrogen exerts its antiinflammatory effects on the vasculature through different mechanisms such as direct antioxidant effect, generation of nitric oxide, prevention of apoptosis in vascular cells and suppression of cytokines and the renin-angiotensin system. On the other hand, estrogen also elicits proinflammatory changes under certain conditions, which are less completely understood. Some of the mechanisms underlying a possible proinflammatory role for estrogen include increased expression of the proinflammatory receptor for advanced glycation end products, increased tyrosine nitration of cellular proteins, and generation of reactive oxygen species through an uncoupled eNOS. In this review, we have presented evidence for both antiinflammatory and proinflammatory pathways modulated by estrogen and how interactions among such pathways might determine the effects of estrogen on the vascular system.  相似文献   

2.
3.
To evaluate the reproducibility of induced sputum analysis, and to estimate the sample size required to obtained reliable results, sputum was induced by hypertonic saline inhalation in 29 asthmatic subjects on two different days. The whole sample method was used for analysis, and inflammatory cells were counted on cytospin slides. Reproducibility, expressed by intra-class correlation coefficients, was good for macrophages (+0.80), neutrophils (+0.85), and eosinophils (+0.87), but not for lymphocytes (+0.15). Detectable differences were 5.5% for macrophages, 0.6% for lymphocytes, 5.2% for neutrophils, and 3.0% for eosinophils. We conclude that analysis of induced sputum is a reproducible method to study airway inflammation in asthma. Sample sizes greater than ours give little improvement in the detectable difference of eosinophil percentages.  相似文献   

4.
5.
During inflammatory processes, monocytes leave the blood stream at increased rates and enter inflammation tissue, where they undergo phenotypic transformation to mature macrophages with enhanced phagocytic activity. alpha-Actinin, a cytoskeletal protein, is present in focal adhesion complexes and left in the microenvironment as a result of cell movement. Mactinin, a 31 kDa amino-terminal fragment of alpha-actinin, is generated by the degradation of extracellular alpha-actinin by monocyte-secreted urokinase. We have previously demonstrated that mactinin promotes monocyte/macrophage maturation. We now report that 0.5-10 nM mactinin has significant chemotactic activity for monocytes. Mactinin seems to be present in inflammatory arthritis synovial fluid, because affinity-purified antisera reacted with a protein of the expected molecular mass in various types of arthritis fluids that were immunoaffinity-purified and subjected to Western analysis. Thus, six of seven samples from patients with psoriatic arthritis, reactive arthritis, gout, or ankylosing spondylitis contained mactinin at levels that are active in vitro. Initially, mactinin was not found in affinity-purified rheumatoid arthritis samples. However, it was detectable after the dissociation of immune complexes, suggesting that it was complexed to anti-microfilament auto-antibodies. In addition, mactinin was found in the lavage fluid from the arthritic knee joints of rabbits with antigen-induced arthritis and was absent from the contralateral control knee fluids. We conclude that mactinin is present in several types of inflammatory arthritis and might modulate mononuclear phagocyte response to inflammation.  相似文献   

6.
Ozone is a commonly encountered environmental oxidant which has been linked to asthma exacerbation in epidemiological studies. Ozone induces airway inflammation and enhances response to inhaled allergen. It has been suggested that antioxidant therapy may minimize the adverse effects of ozone in asthma. We have previously shown that the antioxidant gamma-tocopherol (gammaT), an isoform of vitamin E, also has anti-inflammatory effects. We employed a Brown Norway rat model of ozone-enhanced allergic responses to test the therapeutic effects of gammaT on O(3)-induced airway inflammation. Ovalbumin (OVA)-sensitized rats were intranasally challenged with 0 or 0.5% OVA on Days 1 and 2, and exposed to 0 or 1 ppm ozone (8 h/day) on Days 4 and 5. Rats were also given 0 or 100 mg/kg gammaT on Days 2 through 5. Pulmonary tissue and bronchoalveolar lavage fluid (BALF) were collected on Day 6. OVA challenge caused increased total cells (267% increase) and eosinophils (4000%) in BALF that was unaffected by ozone exposure. Morphometric evaluation of lung tissue revealed increases in intraepithelial mucosubstances (IM) (300%) and subepithelial eosinophils (400%) in main axial airways. Ozone exposure of allergic rats enhanced IM increases in proximal axial airways (200%), induced cys-leukotrienes, MCP-1, and IL-6 production in BALF, and upregulated expression of IL-5 and IL-13 mRNA. gammaT treatment had no effect on IM increases by allergen, but blocked enhancement by ozone. gammaT attenuated both OVA- or ozone-stimulated eosinophilic infiltration, and increases of BALF cys-leukotrienes, MCP-1, and IL-6, as well as IL-5 and IL-13 mRNA. These data demonstrate broad anti-inflammatory effects of a gammaT and suggest that it may be an effective therapy of allergic airway inflammation.  相似文献   

7.
目的 分析囊性纤维化跨膜传导调节因子(cystic fibrosis transmembrane conductance regulator,CFTR)敲除小鼠肝组织中炎症相关因子的表达变化,为进一步探讨CFTR在调节肠肝微生态平衡中的作用奠定理论基础。方法 利用CFTR基因敲除小鼠肝组织,采用Western blot检测炎性细胞因子JNK和AKT活性的变化。结果 CFTR敲除小鼠肝组织中炎性细胞因子JNK和AKT的活性表达均有显著提高。 结论 CFTR具有抑制炎症发生发展的作用。  相似文献   

8.
9.
Polymorphonuclear leukocyte-dominated airway inflammation is a major component of cystic fibrosis (CF) lung disease and may be associated with CF transmembrane conductance regulator (CFTR) dysfunction as well as infection. Mutant DeltaF508 CFTR is mistrafficked, accumulates in the endoplasmic reticulum (ER), and may cause "cell stress" and activation of nuclear factor (NF)-kappaB. G551D mutants also lack Cl- channel function, but CFTR is trafficked normally. We compared the effects of CFTR mutations on the endogenous activation of an NF-kappaB reporter construct. In transfected Chinese hamster ovary cells, the mistrafficked DeltaF508 allele caused a sevenfold activation of NF-kappaB compared with wild-type CFTR or the G551D mutant (P < 0.001). NF-kappaB was also activated in 9/HTEo-/pCep-R cells and in 16HBE/pcftr antisense cell lines, which lack CFTR Cl- channel function but do not accumulate mutant protein in the ER. This endogenous activation of NF-kappaB was associated with elevated interleukin-8 expression. Impaired CFTR Cl- channel activity as well as cell stress due to accumulation of mistrafficked CFTR in the ER contributes to the endogenous activation of NF-kappaB in cells with the CFTR mutation.  相似文献   

10.
11.
Cytokines in airway inflammation   总被引:4,自引:0,他引:4  
With over 50 potential asthma mediators, cytokines are the latest group of substances which have been investigated for their potential role in this disease. The use of murine models of allergic inflammation has facilitated the investigation of the role of individual cytokines in this response. The use of targeted gene disruption, overexpression of genes and monoclonal antibodies directed against cytokines have allowed a detailed examination of the role cytokines play in IgE production, eosinophil recruitment and bronchial hyperresponsiveness, which are the characteristic features of the asthma phenotype. Despite the introduction of this new methodology, conflicting reports relating to the role of cytokines in allergic inflammation, highlight the complexity of allergic inflammation and challenge the notion that a single cytokine can explain the asthma phenotype.  相似文献   

12.
GM-CSF plays an important role in inflammation by promoting the production, activation, and survival of granulocytes and macrophages. In this study, GM-CSF knockout (GM-CSF(-/-)) mice were used to investigate the role of GM-CSF in a model of allergic airway inflammation. In allergic GM-CSF(-/-) mice, eosinophil recruitment to the airways showed a striking pattern, with eosinophils present in perivascular areas, but almost completely absent in peribronchial areas, whereas in wild-type mice, eosinophil infiltration appeared in both areas. In the GM-CSF(-/-) mice, mucus production in the airways was also reduced, and eosinophil numbers were markedly reduced in the bronchoalveolar lavage (BAL)(3) fluid. IL-5 production was reduced in the lung tissue and BAL fluid of GM-CSF(-/-) mice, but IL-4 and IL-13 production, airway hyperresponsiveness, and serum IgE levels were not affected. The presence of eosinophils in perivascular but not peribronchial regions was suggestive of a cell migration defect in the airways of GM-CSF(-/-) mice. The CCR3 agonists CCL5 (RANTES) and CCL11 (eotaxin-1) were expressed at similar levels in GM-CSF(-/-) and wild-type mice. However, IFN-gamma mRNA and protein were increased in the lung tissue and BAL fluid in GM-CSF(-/-) mice, as were mRNA levels of the IFN-gamma-inducible chemokines CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-Tac). Interestingly, these IFN-gamma-inducible chemokines are natural antagonists of CCR3, suggesting that their overproduction in GM-CSF(-/-) mice contributes to the lack of airway eosinophils. These findings demonstrate distinctive abnormalities to a model of allergic asthma in the absence of GM-CSF.  相似文献   

13.
Calmodulin is a selective modulator of estrogen receptors   总被引:5,自引:0,他引:5  
In the search for differences between ERalpha and ERbeta, we analyzed the interaction of both receptors with calmodulin (CaM) and demonstrated that ERalpha but not ERbeta directly interacts with CaM. Using transiently transfected HeLa cells, we examined the effect of the CaM antagonist N-(6-aminohexyl)-5-chloro-naphthalene sulfonilamide hydrochloride (W7) on the transactivation properties of ERalpha and ERbeta in promoters containing either estrogen response elements or activator protein 1 elements. Transactivation by ERalpha was dose-dependently inhibited by W7, whereas that of ERbeta was not inhibited or even activated at low W7 concentrations. In agreement with these results, transactivation of an estrogen response element containing promoter in MCF-7 cells (which express a high ERalpha/ERbeta ratio) was also inhibited by W7. In contrast, transactivation in T47D cells (which express a low ERalpha/ERbeta ratio) was not affected by this CaM antagonist. The sensitivity of MCF-7 cells to W7 was abolished when cells were transfected with increasing amounts of ERbeta, indicating that the sensitivity to CaM antagonists of estrogen-responsive tissues correlates with a high ERalpha/ERbeta ratio. Finally, substitution of lysine residues 302 and 303 of ERalpha for glycine rendered a mutant ERalpha unable to interact with CaM whose transactivation activity became insensitive to W7. Our results indicate that CaM antagonists are selective modulators of ER able to inhibit ERalpha-mediated activity, whereas ERbeta actions were not affected or even potentiated by W7.  相似文献   

14.
Ingolfsson HI  Koeppe RE  Andersen OS 《Biochemistry》2007,46(36):10384-10391
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is the major bioactive compound in turmeric (Curcuma longa) with antioxidant, antiinflammatory, anticarcinogenic, and antimutagenic effects. At low muM concentrations, curcumin modulates many structurally and functionally unrelated proteins, including membrane proteins. Because the cell membranes' lipid bilayer serves as a gate-keeper and regulator of many cell functions, we explored whether curcumin modifies general bilayer properties using channels formed by gramicidin A (gA). gA channels form when two monomers from opposing monolayers associate to form a conducting dimer with a hydrophobic length that is less than the bilayer hydrophobic thickness; gA channel formation thus causes a local bilayer thinning. The energetic cost of this bilayer deformation alters the gA monomer <--> dimer equilibrium, which makes the channels' appearance rate and lifetime sensitive to changes in bilayer material properties, and the gA channels become probes for changes in bilayer properties. Curcumin decreases bilayer stiffness, increasing both gA channel lifetimes and appearance rates, meaning that the energetic cost of the gA-induced bilayer deformation is reduced. These results show that curcumin may exert some of its effects on a diverse range of membrane proteins through a bilayer-mediated mechanism.  相似文献   

15.
The low levels of CFTR gene expression and paucity of CFTR protein in human airway epithelial cells are not easily reconciled with the pivotal role of the lung in cystic fibrosis pathology. Previous data suggested that the regulatory mechanisms controlling CFTR gene expression might be different in airway epithelium in comparison to intestinal epithelium where CFTR mRNA and protein is much more abundant. Here we examine chromatin structure and modification across the CFTR locus in primary human tracheal (HTE) and bronchial (NHBE) epithelial cells and airway cell lines including 16HBE14o- and Calu3. We identify regions of open chromatin that appear selective for primary airway epithelial cells and show that several of these are enriched for a histone modification (H3K4me1) that is characteristic of enhancers. Consistent with these observations, three of these sites encompass elements that have cooperative enhancer function in reporter gene assays in 16HBE14o- cells. Finally, we use chromosome conformation capture (3C) to examine the three-dimensional structure of nearly 800 kb of chromosome 7 encompassing CFTR and observe long-range interactions between the CFTR promoter and regions far outside the locus in cell types that express high levels of CFTR.  相似文献   

16.
Cystic fibrosis iscaused by mutations in the cystic fibrosis transmembrane conductanceregulator (CFTR) Clchannel, which mediates transepithelialCl transport in a varietyof epithelia, including airway, intestine, pancreas, and sweat duct. Insome but not all epithelial cells, cAMP stimulatesCl secretion in part byincreasing the number of CFTRCl channels in the apicalplasma membrane. Because the mechanism whereby cAMP stimulates CFTRCl secretion is cell-typespecific, our goal was to determine whether cAMP elevates CFTR-mediatedCl secretion across serousairway epithelial cells by stimulating the insertion of CFTRCl channels from anintracellular pool into the apical plasma membrane. To this end westudied Calu-3 cells, a human airway cell line with a serous cellphenotype. Serous cells in human airways, such as Calu-3 cells, expresshigh levels of CFTR, secrete antibiotic-rich fluid, and play a criticalrole in airway function. Moreover, dysregulation of CFTR-mediatedCl secretion in serouscells is thought to contribute to the pathophysiology of cysticfibrosis lung disease. We report that cAMP activation of CFTR-mediatedCl secretion across humanserous cells involves stimulation of CFTR channels present in theapical plasma membrane and does not involve the recruitment of CFTRfrom an intracellular pool to the apical plasma membrane.

  相似文献   

17.
The cloning, expression, and function of the murine (m) homologue of human (h) monocyte-derived chemokine (MDC) is reported here. Like hMDC, mMDC is able to elicit the chemotactic migration in vitro of activated lymphocytes and monocytes. Among activated lymphocytes, Th2 cells were induced to migrate most efficiently. mMDC mRNA and protein expression is modulated during the course of an allergic reaction in the lung. Neutralization of mMDC with specific Abs in a model of lung inflammation resulted in prevention of airway hyperreactivity and significant reduction of eosinophils in the lung interstitium but not in the airway lumen. These data suggest that mMDC is essential in the transit/retention of leukocytes in the lung tissue rather than in their extravasation from the blood vessel or during their transepithelial migration into the airways. These results also highlight the relevance of factors, such as mMDC, that regulate the migration and accumulation of leukocytes within the tissue during the development of the key physiological endpoint of asthma, airway hyperreactivity.  相似文献   

18.
CARMA1 has been shown to be important for Ag-stimulated activation of NF-kappaB in lymphocytes in vitro and thus could be a novel therapeutic target in inflammatory diseases such as asthma. In the present study, we demonstrate that mice with deletion in the CARMA1 gene (CARMA1(-/-)) do not develop inflammation in a murine model of asthma. Compared with wild-type controls, CARMA1(-/-) mice did not develop airway eosinophilia, had no significant T cell recruitment into the airways, and had no evidence for T cell activation in the lung or draining lymph nodes. In addition, the CARMA1(-/-) mice had significantly decreased levels of IL-4, IL-5, and IL-13, did not produce IgE, and did not develop airway hyperresponsiveness or mucus cell hypertrophy. However, adoptive transfer of wild-type Th2 cells into CARMA1(-/-) mice restored eosinophilic airway inflammation, cytokine production, airway hyperresponsiveness, and mucus production. This is the first demonstration of an in vivo role for CARMA1 in a disease process. Furthermore, the data clearly show that CARMA1 is essential for the development of allergic airway inflammation through its role in T lymphocytes, and may provide a novel means to inhibit NF-kappaB for therapy in asthma.  相似文献   

19.
The present study concerns the involvement of the ceramide produced through sphingomyelinase (SMase)-mediated catalysis in airway anion secretion of Calu-3 cells. Short-circuit current (Isc) measurement revealed that isoproterenol (ISO, 0.1 microM)-induced anion secretion was prevented by pretreatment with SMase (0.3 U/ml, for 30 min) from the basolateral but not the apical side, although basal and 1-ethyl-2-benzimidazolinone (1-EBIO, a Ca2+-activated K+ channel opener)-induced Isc were unaffected. The effects of SMase were reproduced in responses to forskolin (20 microM) or 8-bromo-cAMP (2 mM). C2-ceramide, a cell-permeable analog, also repressed the 8-bromo-cAMP-induced responses. Nystatin permeabilization studies confirmed that the SMase- and C2-ceramide-induced repressions were due to hindrance of augmentation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated conductance across the apical membrane. Further, SMase failed to influence K+ conductance across the basolateral membrane. These results suggest that the ceramide originating from basolateral sphingomyelin acts on activated CFTR from the cytosolic side, hindering anion secretion.  相似文献   

20.
CFTR is a monomer: biochemical and functional evidence   总被引:3,自引:0,他引:3  
Although the CFTR protein alone is sufficient to generate a regulated chloride channel, it is unknown how many of the polypeptides form the channel. Using biochemical and functional assays, we demonstrate that the CFTR polypeptide is a monomer. CFTR sediments as a monomer in a linear, continuous sucrose gradient. Cells co-expressing different epitope-tagged CFTR provide no evidence of co-assembly in immunoprecipitation and nickel affinity binding experiments. Co-expressed wild-type and DF508 CFTR are without influence on each other in their ability to progress through the secretory pathway, suggesting they do not associate in the endoplasmic reticulum. No hybrid conducting single channels are seen in planar lipid bilayers with which membrane vesicles from cells co-expressing similar amounts of two different CFTR conduction species have been fused.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号