首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to examine how global cardiac gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) can influence left ventricular (LV) mechanical and energetic function, especially in terms of O(2) cost of LV contractility, in normal rats. Normal rats were randomized to receive an adenovirus carrying the SERCA2a (SERCA) or beta-galactosidase (beta-Gal) gene or saline by a catheter-based technique. LV mechanical and energetic function was measured in cross-circulated heart preparations 2-3 days after the infection. The end-systolic pressure-volume relation was shifted upward, end-systolic pressure at 0.1 ml of intraballoon water volume was higher, and equivalent maximal elastance, i.e., enhanced LV contractility, was higher in the SERCA group than in the normal, beta-Gal, and saline groups. Moreover, the LV relaxation rate was faster in the SERCA group. There was no significant difference in myocardial O(2) consumption per beat-systolic pressure-volume area relation among the groups. Finally, O(2) cost of LV contractility was decreased to subnormal levels in the SERCA group but remained unchanged in the beta-Gal and saline groups. This lowered O(2) cost of LV contractility in SERCA hearts indicates energy saving in Ca(2+) handling during excitation-contraction coupling. Thus overexpression of SERCA2a transformed the normal energy utilization to a more efficient state in Ca(2+) handling and superinduced the supranormal contraction/relaxation due to enhanced Ca(2+) handling.  相似文献   

2.
Diastolic dysfunction results from impaired ventricular relaxation and is an important component of human heart failure. Genetic modification of intracellular calcium-handling proteins may hold promise to redress diastolic dysfunction; however, it is unclear whether other important aspects of myocyte function would be compromised by this approach. Accordingly, a large animal model of humanlike diastolic dysfunction was established through 1 yr of left ventricular (LV) pressure overload by descending thoracic aortic coarctation in canines. Serial echocardiography documented a progressive increase in LV mass. Diastolic dysfunction with preserved systolic function was evident at the whole organ and myocyte levels in this model, as determined by hemispheric sonomicrometric piezoelectric crystals, pressure transducer catheterization, and isolated myocyte studies. Gene transfer of the sarco(endo)plasmic reticulum calcium-ATPase (SERCA2a) and parvalbumin (Parv), a fast-twitch skeletal muscle Ca(2+) buffer, restored cardiac myocyte relaxation in a dose-dependent manner under baseline conditions. At high Parv concentrations, sarcomere shortening was depressed. In contrast, during beta-adrenergic stimulation, the expected enhancement of myocyte contraction (inotropy) was abrogated by SERCA2a but not by Parv. The mechanism of this effect is unknown, but it could relate to the uncoupling of SERCA2a/phospholamban in SERCA2a myocytes. Considering that inotropy is vital to overall cardiac performance, the divergent effects of SERCA2a and Parv reported here could impact potential therapeutic strategies for human heart failure.  相似文献   

3.
A mouse model carrying a null mutation in one copy of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase isoform 2 (SERCA2) gene, in which SERCA2 protein levels are reduced by approximately 35%, was used to investigate the effects of decreased SERCA2 level on intracellular Ca(2+) homeostasis and contractile properties in isolated cardiomyocytes. When compared with wild-type controls, SR Ca(2+) stores and Ca(2+) release in myocytes of SERCA2 heterozygous mice were decreased by approximately 40-60% and approximately 30-40%, respectively, and the rate of myocyte shortening and relengthening were each decreased by approximately 40%. However, the rate of Ca(2+) transient decline (tau) was not altered significantly, suggesting that compensation was occurring in the removal of Ca(2+) from the cytosol. Phospholamban, which inhibits SERCA2, was decreased by approximately 40% in heterozygous hearts, and basal phosphorylation of Ser-16 and Thr-17, which relieves the inhibition, was increased approximately 2- and 2.1-fold. These results indicate that reduced expression and increased phosphorylation of phospholamban provides compensation for decreased SERCA2 protein levels in heterozygous heart. Furthermore, both expression and current density of the sarcolemmal Na(+)-Ca(2+) exchanger were up-regulated. These results demonstrate that a decrease in SERCA2 levels can directly modify intracellular Ca(2+) homeostasis and myocyte contractility. However, the resulting deficit is partially compensated by alterations in phospholamban/SERCA2 interactions and by up-regulation of the Na(+)-Ca(2+) exchanger.  相似文献   

4.
A reduced coronary flow reserve (CFR) has been demonstrated in diabetes, but the underlying mechanisms are unknown. We assessed thermodilution-derived CFR after 5-min intravenous adenosine infusion through a pressure-temperature sensor-tipped wire in 30 coronary arteries without significant lumen reduction in 30 patients: 13 with and 17 without a history of diabetes. We determined CFR as the ratio of basal and hyperemic mean transit times (T(mn)); fractional flow reserve (FFR) as the ratio of distal and proximal pressures at maximal hyperemia to exclude local macrovascular disease; and an index of microvascular resistance (IMR) as the distal coronary pressure at maximal hyperemia divided by the inverse of the hyperemic T(mn). We also assessed insulin resistance by the homeostasis model assessment (HOMA) index. FFR was normal in all investigated arteries. CFR was significantly lower in diabetic vs. nondiabetic patients [median (interquartile range): 2.2 (1.4-3.2) vs. 4.1 (2.7-4.4); P = 0.02]. Basal T(mn) was lower in diabetic vs. nondiabetic subjects [median (interquartile range): 0.53 (0.25-0.71) vs. 0.64 (0.50-1.17); P = 0.04], while hyperemic T(mn) and IMR were similar. We found significant correlations at linear regression analysis between logCFR and the HOMA index (r(2) = 0.35; P = 0.0005) and between basal T(mn) and the HOMA index (r(2) = 0.44; P < 0.0001). In conclusion, compared with nondiabetic subjects, CFR is lower in patients with diabetes and epicardial coronary arteries free of severe stenosis, because of increased basal coronary flow, while hyperemic coronary flow is similar. Basal coronary flow relates to insulin resistance, suggesting a key role of cellular metabolism in the regulation of coronary blood flow.  相似文献   

5.
Adenoviral gene transfer in a rat fracture model   总被引:3,自引:0,他引:3  
For the enhancement of fracture healing, either purified proteins or vectors for expression of growth factors in situ may be used. Adenoviral vectors directly convert cells to express a transgene. However, the cell types which are preferentially infected and the time of expression during fracture healing are currently not known. The adenoviral type 5 vectors used in this study are replication incompetent viruses, one encoding beta-galactosidase (beta-GAL) and one green fluorescent protein. Femora of 35 Sprague-Dawley rats were fractured. Three days after stabilization with Kirschner wire, 10(12) pfu viral suspension were injected into the fracture zone. As a control, five animals received injections of adenovirus type 2. Animals were sacrificed after 3 days, 1, 2 and 4 weeks. Fractures healed radiographically within 2-3 weeks. All specimens were examined for beta-GAL and green fluorescent protein (GFP) expression. Fibroblast and osteoblasts within callus tissue displayed a high transgene expression (week 1). A decrease of expression was observed during the observation period. In this experimental study, we have demonstrated that all cells of the primary callus can be transfected using adenoviral vectors, which provide a tool to further investigate adenoviral transfer of growth factors such as bone morphogenetic protein-2 (BMP-2).  相似文献   

6.
Chen LB  Gong HB  Liu Y  Wang ZQ  Lv Q 《生理学报》2010,62(6):511-516
The present study is aimed to study the effect of sarcoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) gene transfer on the contractile function of isolated cardiomyocytes of canines. The cardiomyocytes were isolated with collagenases. The isolated cardiac cells were divided into untransfected group, empty vector group and SERCA2a-transfected group. Recombinant adenovirus vector carrying enhanced green fluorescent protein gene was used for SERCA2a gene delivery. The expression of SERCA2a protein in cardiomyocytes was determined by Western blot. Contractile function of cardiomyocytes was measured with motion edge-detection system of single cell at 48 h after transfection. The results showed, compared with untransfected group, SERCA2a protein level, percentage of peak contraction amplitude under normal condition, percentages of peak contraction amplitude under Ca(2+) or isoproterenol stimulation, time-to-peak contraction (TTP) and time-to-50% relaxation (R50) in SERCA2a-transfected group all increased significantly. While all the above indices in empty vector group did not show any differences with those in untransfected group. These results suggest that the overexpression of SERCA2a by gene transfer may enhance the contraction function of canine myocardial cells.  相似文献   

7.
Post-thrombotic inflammation probably contributes to chronic venous insufficiency, and little effective treatment exists. IL-10 is an anti-inflammatory cytokine that previously has been shown to decrease perithrombotic inflammation and thrombosis. We investigated in a rat model whether local expression of viral IL-10 (vIL-10) in a segment of vein that undergoes thrombosis would confer an anti-inflammatory effect and how this effect might be mediated. Rats underwent inferior vena cava isolation, cannulation, and instillation of saline or adenovirus encoding either beta-galactosidase or vIL-10. Two days after transfection, thrombosis was induced, 2 days after this the rats underwent gadolinium (Gd)-enhanced magnetic resonance venography exam, and the vein segments were harvested. Tissue transfection was confirmed by either RT-PCR of vIL-10 or positive 5-bromo-4-chloro-3-indolyl beta-d-galactopyranoside (X-Gal) staining. vIL-10 significantly decreased both leukocyte vein wall extravasation and area of Gd enhancement compared with those in controls, suggesting decreased inflammation. Immunohistochemistry demonstrated decreased endothelial border staining of P- and E-selectin, while ELISA of vein tissue homogenates revealed significantly decreased P- and E-selectin and ICAM-1 levels in the vIL-10 group compared with those in controls. Importantly, native cellular IL-10 was not significantly different between the groups. However, neither clot weight nor coagulation indexes, including tissue factor activity, tissue factor Ag, or von Willebrand factor levels, were significantly affected by local vIL-10 expression. These data suggest that local transfection of vIL-10 decreases venous thrombosis-associated inflammation and cell adhesion molecule expression, but does not directly affect local procoagulant activity.  相似文献   

8.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

9.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg–1 i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart. (Mol Cell Biochem 261: 245–249, 2004)  相似文献   

10.
The present study was designed to determine the effects of metformin on the forearm glucose uptake and blood flow after an oral glucose challenge. Eleven normal subjects, and ten non-obese type 2 diabetes patients without medication of anti-hyperglycemic drug and with medication of metformin for four weeks, were studied after an overnight fast (12-14 h) and 3 hours after ingestion of 75 g of glucose. Peripheral glucose metabolism was analyzed by the forearm technique combined with indirect calorimetry. The forearm glucose uptake increased in diabetes patients taking metformin (63.5+/-9.1 VS. 39.1+/-5.3 mg/100 ml FA. 3 h). The increase of forearm glucose uptake was due to increase of blood flow. The glucose oxidation was greater in the group treated with metformin, compared to the same group without anti-hyperglycemic drug (19.3+/-2.6 VS. 7.7+/-2.6 mg/100 ml FA. 3 hrs). The free fatty acids were higher in diabetes patients, which normalized after taking metformin. In conclusion, it was found that in these participants metformin acts in insulin resistance; it increases glucose muscle uptake and blood flow. The enhancement of blood flow and lower free fatty acids, not described yet, could be direct effects of the drug or due to reduced glucose toxicity. These positive effects must be responsible for the improvement in vascular function.  相似文献   

11.
We have utilized a rat model of peripheral artery disease (PAD) to examine whether the known angiogenic activity of the Y(2) receptor would translate into a meaningful increase in collateral blood flow. The maximal increase in collateral blood flow capacity of approximately 60% (p<0.001) was obtained with a 10microg/kgday (IA infusion, 14 days) of either PYY or PYY(3-36) and did not differ from that obtained with a maximally angiogenic dose of VEGF(165). Pharmacodynamic modeling based upon single dose pharmacokinetic plasma profiles of both agonists suggests that E(max) is reached when the Y(2) receptor is occupied by >or=50%. Furthermore, for PYY(3-36), occupancy of the Y(2) receptor is sufficient to promote a significant benefit in collateral blood flow.  相似文献   

12.
The objective of this paper is to investigate co-inheritance of specific HSPG and ApoE genotypes in the development of Chinese type 2 diabetic nephropathy. PCR-RFLP was used to detect HSPG and ApoE genotypes in 385 Chinese subjects including 298 patients with type 2 diabetes mellitus (T2DM) and 87 non-diabetic controls (Non-DM). The T2DM group was subdivided into patients with (TDN; n = 218) and without diabetic nephropathy (Non-DN; n = 80). The latter group was further subdivided into groups of patients with microalbuminuria nephropathy (DN-1; n = 129) and severe diabetic nephropathy (DN-2; n = 89). We then compared the relative frequencies of various HSPG and ApoE genotypes and alleles among the groups, searching for predictive trends. The T allele of the HSPG gene occurred more frequently in the DN-2 group than in the Non-DN or DN-1 or groups, their (Fisher's exact p was 1.05 × 10–3 and 6.58 × 10–6; odds ratios were 2.09 (95% CI 1.32–3.30) and 2.48 (95% CI 1.64–3.74), respectively. The E2 allele of the ApoE gene occurred more frequently in the T2DM than in the Non-DM group, the Fisher's exact p was 0.0087; odds ratio was 3.45 (95% CI 1.30–9.81). Genotype analysis showed that the TT or TG of HSPG gene were paired with the E2/2 or E2/3 of ApoE gene significantly more frequently in the TDN group than in the Non-DN group, with an odds ratio of 3.03 (95% CI 1.03–8.90). There was no significant differences in other combinations of genotypes in HSPG and ApoE genes between TDN and Non-DN group. These results suggest that the HSPG T allele is a risk factor for the development of severe diabetic nephropathy in type 2 diabetic patients, and that the ApoE E2 allele is a risk factor for the occurrence of type 2 diabetes mellitus in Chinese general population. In addition, we find that co-inheritance of T/E2 confers a higher risk of type 2 diabetes mellitus progression to diabetic nephropathy in Chinese.  相似文献   

13.
To develop a rat model of type 2 diabetic mellitus that simulated the common manifestation of the metabolic abnormalities and resembled the natural history of a certain type 2 diabetes in human population, male Sprague-Dawley rats (4 months old) were injected with low-dose (15 mg/kg) STZ after high fat diet (30% of calories as fat) for two months (L-STZ/2HF). The functional and histochemical changes in the pancreatic islets were examined. Insulin-glucose tolerance test, islet immunohistochemistry and other corresponding tests were performed and the data in L-STZ/2HF group were compared with that of other groups, such as the model of type 1 diabetes (given 50 mg/kg STZ) and the model of obesity (high fat diet). The body weight of rats in the group of rats given 15 mg/kg STZ after high fat diet for two months increased significantly more than that of rats in the group of rats given 50 mg/kg STZ (the model of type 1 diabetes) (595 +/- 33 g vs. 352 +/- 32 g, p<0.05). Fast blood glucose levels for L-STZ/2HF group were 16.92 +/- 1.68 mmol/l, versus 5.17 +/- 0.55 mmol/l in normal control and 5.59 +/- 0.61 mmol/l in rats given high fat diet only. Corresponding values for fast serum insulin were 0.66 +/- 0.15 ng/ml, 0.52 +/- 0.13 ng/ml, 0.29 +/- 0.11 ng/ml, respectively. Rats of type 2 diabetes (L-STZ/2HF) had elevated levels of triglyceride (TG, 3.82 +/- 0.88 mmol/l), and cholesterol(Ch, 2.38 +/- 0.55 mmol/l) compared with control (0.95 +/- 0.15 mmol/l and 1.31 +/- 0.3 mmol/l, respectively) (p<0.05). The islet morphology as examined by immunocytochemistry using insulin antibodies in the L-STZ/2HF group was affected and quantitative analysis showed the islet insulin content was higher than that of rats with type 1 diabetes (P<0.05). We concluded that the new rat model of type 2 diabetes established with conjunctive treatment of low dose of STZ and high fat diet was characterized by hyperglycemia and light impaired insulin secretion function accompanied by insulin resistance, which resembles the clinical manifestation of type 2 diabetes. Such a model, easily attainable and inexpensive, would help further elucidation of the underlying mechanisms of diabetes and its complications.  相似文献   

14.
Taurine acts as antioxidant, cell osmolyte, modulator of glucose metabolism, and plays a role in the retinal function. It is 103-fold more concentrated in the intracellular than in the extracellular milieu due to a specific taurine-Na-dependent transporter (TauT), which is upregulated by hypertonicity, low extracellular taurine, or oxidative stress and acutely downregulated ‘in vitro’ by high glucose concentrations. Aim of this study was to investigate whether TauT expression was modified in mononuclear peripheral blood cells (MPC) of type 2 diabetic patients with or without micro/macrovascular complications. Plasma taurine, as well as other sulphur-containing aminoacids (assayed by HPLC) and TauT gene expression (assayed by real-time PCR analysis) were measured in MPC of 45 controls and of 81 age-and-sex matched type 2 diabetic patients with or without micro/macrovascular complications. Median value (interquartile range) of plasma taurine was significantly lower in diabetic patients than in controls [28.7 (13.7) μmol/l vs. 46.5 (20.3) μmol/l; P?<?0.05], while median TauT expression, in arbitrary units, was significantly higher in diabetics than in controls [3.8 (3.9) vs. 1 (1.3); P?<?0.05) and was related to HbA1c only in controls (r?=?0.34; P?<?0.05). Patients with retinopathy (n?=?25) had lower TauT expression than those who were unaffected [3.1 (2.8) vs. 4.1 (3.4); P?<?0.05], while persistent micro/macroalbuminuria was associated with unchanged TauT expression. A trend toward reduction in TauT expression was observed in patients with macroangiopathy [n?=?27; 3.3 (2.5) vs. 4 [3.7]; P?=?NS]. In conclusion, TauT gene is overexpressed in MPC of type 2 diabetic patients, while presence of retinopathy is specifically associated with a drop in TauT overexpression, suggesting its possible involvement in this microangiopathic lesion.  相似文献   

15.
Adenoviral vectors have been successfully used to increase the activity of the sarcoplasmic reticulum Ca2+-ATPase in adult ventricular myocytes and to produce functional improvements in contractility in vivo and in vitro. While in vivo experiments are often performed in rat, in vitro manipulation of myocytes has been confined to rabbit and human cells. In the present study we make quantitative comparisons between cultured adult rat and rabbit myocytes in their responses to SERCA2a overexpression using adenoviral vectors. We also compare the strategy of SERCA2a overexpression with that of phospholamban down-regulation, using adenovirus carrying antisense message, as a means to increase SERCA2a activity and enhance contraction and relaxation. Adult myocytes were cultured for 48 h with either vector, and contraction assessed in 2 mM Ca2+, 37°C, at a range of stimulation frequencies. Contraction amplitude was enhanced to a similar degree in either rat or rabbit myocytes at most stimulation frequencies, with SERCA2a overexpression and phospholamban down-regulation approximately equally effective. The maximum effect of either vector was less than that of -adrenoceptor agonists. Relaxation was accelerated in rabbit myocytes more strongly than in rat. Phospholamban antisense was slightly less effective than SERCA2a overexpression on relaxation times in rabbit. Increasing stimulation frequency also accelerated relaxation in rat myocytes: this effect was greater than, and additive with, that of SERCA2a overexpression. We conclude that, despite some species-dependent modification, the effects of increased SERCA2a activity are broadly similar in rat and rabbit. Both SERCA2a overexpression and phospholamban down-regulation are effective strategies, and neither appears to produce supraphysiological stimulatory effects on contraction or relaxation.  相似文献   

16.
17.
Carbon monoxide (CO), one of the products of heme oxygenase (HO) catalyzed heme degradation, is a vasodilator. The aim of the present study was to clarify the role of HO in blood flow maintenance in tumors. Male BD9 rats bearing subcutaneous transplants of the P22 carcinosarcoma tumor were treated intraperitoneally (i.p.) with either tin-protoporphyrin IX (SnPP; 45 micromol/kg), a selective inhibitor of HO or copper-protoporphyrin IX (CuPP; 45 micromol/kg), used as a negative control. The extent of HO activity inhibition was measured using a spectrophotometric assay of bilirubin production and blood flow rates to the tumor and a range of normal tissues were assessed using the uptake of the radiolabelled tracer, iodo-antipyrine ((125)I-IAP). The animals were cannulated under fentanyl citrate/fluanisone (Hypnorm)/midazolam anesthesia. In the P22 tumor, SnPP, but not CuPP, caused a complete inhibition of HO activity 15 min post-treatment. Administration of SnPP 15 min before blood flow measurements reduced tumor blood flow by 17%, with no effects in any of the normal tissues studied. However, CuPP induced a greater reduction in tumor blood flow than SnPP (45% decrease). Furthermore, CuPP caused a reduction in blood flow to the skin and small intestine but a significant increase to skeletal muscle. The current findings conclusively establish only a minor role played by the HO/CO system in the maintenance of blood flow in this tumor system, despite relatively high levels of HO-1 protein and HO activity. The results also highlight the potential usefulness of CuPP as a tumor blood flow modifier.  相似文献   

18.
Cardiomyocyte apoptosis has been observed in several cardiovascular diseases and contributes to the subsequent cardiac remodeling processes and progression to heart failure. Consequently, apoptosis imaging is helpful for noninvasively detecting the disease progression and providing treatment guidance. Here, we tested 18F-labeled 2-(5-fluoropentyl)-2-methyl-malonic acid (18F-ML-10) and 18F-labeled 2-(3-fluoropropyl)-2-methyl-malonic acid (18F-ML-8) for apoptosis imaging in rat models of myocardial infarction (MI) and compared them with 18F-fluorodeoxyglucose (18F-FDG). MI was induced in Sprague-Dawley rats by permanent left coronary artery ligation. Procedural success was confirmed by echocardiography and positron emission tomography (PET) imaging with 18F-FDG. In vivo PET imaging with 18F-ML-10 and 18F-ML-8 was performed in the MI models at different time points after operation. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemical analyses were used to evaluate myocardial apoptosis. In vitro cell binding assays were performed to validate 18F-ML-8 binding to apoptotic cardiomyocytes. PET imaging demonstrated high 18F-ML-10 and 18F-ML-8 uptake where 18F-FDG uptake was absent. The focal accumulation of the two tracers was high on days 1 and 3 but was not notable on days 5 and 7 after surgery. The infarct-to-lung uptake ratio was 4.29?±?0.30 for 18F-ML-10 and 3.51?±?0.18 for 18F-ML-8 (n?=?6, analyzed by averaging the uptake ratios on postoperative days 1 and 3, P?<?0.05). The TUNEL results showed that myocardial cell apoptosis was closely related to the focal uptake of the apoptotic tracers in the infarct area. In addition, the apoptosis rates calculated from the TUNEL results were better correlated with 18F-ML-8 uptake than with 18F-ML-10 uptake. Ex vivo cell binding assays demonstrated that 18F-ML-8 accumulated in apoptotic cells but not in necrotic or normal cells. PET imaging using 18F-ML-10 or 18F-ML-8 allows the noninvasive detection of myocardial apoptosis in the early phase. In addition, 18F-ML-8 may be better than 18F-ML-10 for apoptosis imaging. We propose that PET imaging with 18F-ML-10 or 18F-ML-8 combined with 18F-FDG is an alternative for detecting and assessing MI.  相似文献   

19.

Background  

Interruption of flow through of cerebral blood vessels results in acute ischemic stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the development of vasogenic edema and secondary hemorrhage known as hemorrhagic transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature increase the risk of HT and augment ischemic injury.  相似文献   

20.
We have previously shown that pancreatic sensory neurons in rats with chronic pancreatitis (CP) display increased excitability associated with a decrease in transient inactivating potassium currents (I(A)), thus accounting in part for the hyperalgesia associated with this condition. Because of its well known role in somatic hyperalgesia, we hypothesized a role for the nerve growth factor (NGF) in driving these changes. CP was induced by intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. After 3 wk, anti-NGF antibody or control serum was injected intra-peritoneally daily for 1 wk. This protocol was repeated in another set of experiments in control rats (receiving intraductal PBS instead of TNBS). Pancreatic nociceptors labeled with the dye Dil were identified, and patch-clamp recordings were made from acutely dissociated DRG neurons. Sensory neurons from anti-NGF-treated rats displayed a lower resting membrane potential, increased rheobase, decreased burst discharges in response to stimulatory current, and decreased input resistance compared with those treated with control serum. Under voltage-clamp condition, neuronal I(A) density was increased in anti-NGF-treated rats compared with rats treated with control serum. However, anti-NGF treatment had no effect on electrophysiological parameters in neurons from control rats. The expression of Kv-associated channel or ancillary genes Kv1.4, 4.1, 4.2, 4.3, and DPP6, DPP10, and KCHIPs 1-4 in pancreas-specific nociceptors was examined by laser-capture microdissection and real-time PCR quantification of mRNA levels. No significant differences were seen among those. These findings emphasize a key role for NGF in maintaining neuronal excitability in CP specifically via downregulation of I(A) by as yet unknown mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号