首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.  相似文献   

2.
The construction and analysis of networks is increasingly widespread in biological research. We have developed esyN (“easy networks”) as a free and open source tool to facilitate the exchange of biological network models between researchers. esyN acts as a searchable database of user-created networks from any field. We have developed a simple companion web tool that enables users to view and edit networks using data from publicly available databases. Both normal interaction networks (graphs) and Petri nets can be created. In addition to its basic tools, esyN contains a number of logical templates that can be used to create models more easily. The ability to use previously published models as building blocks makes esyN a powerful tool for the construction of models and network graphs. Users are able to save their own projects online and share them either publicly or with a list of collaborators. The latter can be given the ability to edit the network themselves, allowing online collaboration on network construction. esyN is designed to facilitate unrestricted exchange of this increasingly important type of biological information. Ultimately, the aim of esyN is to bring the advantages of Open Source software development to the construction of biological networks.  相似文献   

3.
Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.  相似文献   

4.
Ecological interaction networks, such as those describing the mutualistic interactions between plants and their pollinators or between plants and their frugivores, exhibit non‐random structural properties that cannot be explained by simple models of network formation. One factor affecting the formation and eventual structure of such a network is its evolutionary history. We argue that this, in many cases, is closely linked to the evolutionary histories of the species involved in the interactions. Indeed, empirical studies of interaction networks along with the phylogenies of the interacting species have demonstrated significant associations between phylogeny and network structure. To date, however, no generative model explaining the way in which the evolution of individual species affects the evolution of interaction networks has been proposed. We present a model describing the evolution of pairwise interactions as a branching Markov process, drawing on phylogenetic models of molecular evolution. Using knowledge of the phylogenies of the interacting species, our model yielded a significantly better fit to 21% of a set of plant–pollinator and plant–frugivore mutualistic networks. This highlights the importance, in a substantial minority of cases, of inheritance of interaction patterns without excluding the potential role of ecological novelties in forming the current network architecture. We suggest that our model can be used as a null model for controlling evolutionary signals when evaluating the role of other factors in shaping the emergence of ecological networks.  相似文献   

5.
Model‐based analysis of enzyme kinetics allows the determination of optimal conditions for their use in biocatalysis. For biotransformations or fermentative approaches the modeling of metabolic pathways or complex metabolic networks is necessary to obtain model‐based predictions of steps which limit product formation within the network. To set up adequate kinetic models, relevant mechanistic information about enzyme properties is required and can be taken from in vitro studies with isolated enzymes or from in vivo investigations using stimulus‐response experiments which provide a lot of kinetic information about the metabolic network. But with increasing number of reaction steps and regulatory interdependencies in the network structure the amount of simulation data dramatically increases and the simulation results from the dynamic models become difficult to analyze and interpret. Demonstrated for an Escherichia coli model of the central carbon metabolism, methods for visualization and animation of simulation data were applied and extended to facilitate model analysis and biological interpretation. The dynamic metabolite pool and metabolic flux changes were visualized simultaneously by a software tool. In addition, a new quantification method for enzyme activation/inhibition was proposed, and this information was implemented in the metabolic visualization.  相似文献   

6.
The flow of information within a cell is governed by a series of protein–protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor–ligand binding model and a rule‐based model of interleukin‐12 (IL‐12) signaling in naïve CD4+ T cells. The IL‐12 signaling pathway includes multiple protein–protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo‐equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL‐12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank‐ and flux‐based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule‐based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

7.
8.
Artificial gene regulatory networks are computational models that draw inspiration from biological networks of gene regulation. Since their inception they have been used to infer knowledge about gene regulation and as methods of computation. These computational models have been shown to possess properties typically found in the biological world, such as robustness and self organisation. Recently, it has become apparent that epigenetic mechanisms play an important role in gene regulation. This paper describes a new model, the Artificial Epigenetic Regulatory Network (AERN) which builds upon existing models by adding an epigenetic control layer. Our results demonstrate that AERNs are more adept at controlling multiple opposing trajectories when applied to a chaos control task within a conservative dynamical system, suggesting that AERNs are an interesting area for further investigation.  相似文献   

9.
10.
Intrinsic neuronal and circuit properties control the responses of large ensembles of neurons by creating spatiotemporal patterns of activity that are used for sensory processing, memory formation, and other cognitive tasks. The modeling of such systems requires computationally efficient single-neuron models capable of displaying realistic response properties. We developed a set of reduced models based on difference equations (map-based models) to simulate the intrinsic dynamics of biological neurons. These phenomenological models were designed to capture the main response properties of specific types of neurons while ensuring realistic model behavior across a sufficient dynamic range of inputs. This approach allows for fast simulations and efficient parameter space analysis of networks containing hundreds of thousands of neurons of different types using a conventional workstation. Drawing on results obtained using large-scale networks of map-based neurons, we discuss spatiotemporal cortical network dynamics as a function of parameters that affect synaptic interactions and intrinsic states of the neurons.  相似文献   

11.
Robustness analysis and tuning of synthetic gene networks   总被引:1,自引:0,他引:1  
  相似文献   

12.
A duplication growth model of gene expression networks   总被引:8,自引:0,他引:8  
  相似文献   

13.
14.
Genome-scale metabolic network reconstructions in microorganisms have been formulated and studied for about 8 years. The constraint-based approach has shown great promise in analyzing the systemic properties of these network reconstructions. Notably, constraint-based models have been used successfully to predict the phenotypic effects of knock-outs and for metabolic engineering. The inherent uncertainty in both parameters and variables of large-scale models is significant and is well suited to study by Monte Carlo sampling of the solution space. These techniques have been applied extensively to the reaction rate (flux) space of networks, with more recent work focusing on dynamic/kinetic properties. Monte Carlo sampling as an analysis tool has many advantages, including the ability to work with missing data, the ability to apply post-processing techniques, and the ability to quantify uncertainty and to optimize experiments to reduce uncertainty. We present an overview of this emerging area of research in systems biology.  相似文献   

15.
Cell signaling pathways interact with one another to form networks in mammalian systems. Such networks are complex in their organization and exhibit emergent properties such as bistability and ultrasensitivity. Analysis of signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of models. This review focuses on theoretical approaches to understanding cell signaling networks. Using heterotrimeric G protein pathways an example, we demonstrate how interactions between two pathways can result in a network that contains a positive feedback loop and function as a switch. Different mathematical approaches that are currently used to model signaling networks are described, and future challenges including the need for databases as well as enhanced computing environments are discussed.  相似文献   

16.
Dynamic models of gene expression and classification   总被引:3,自引:0,他引:3  
Powerful new methods, like expression profiles using cDNA arrays, have been used to monitor changes in gene expression levels as a result of a variety of metabolic, xenobiotic or pathogenic challenges. This potentially vast quantity of data enables, in principle, the dissection of the complex genetic networks that control the patterns and rhythms of gene expression in the cell. Here we present a general approach to developing dynamic models for analyzing time series of whole genome expression. In this approach, a self-consistent calculation is performed that involves both linear and non-linear response terms for interrelating gene expression levels. This calculation uses singular value decomposition (SVD) not as a statistical tool but as a means of inverting noisy and near-singular matrices. The linear transition matrix that is determined from this calculation can be used to calculate the underlying network reflected in the data. This suggests a direct method of classifying genes according to their place in the resulting network. In addition to providing a means to model such a large multivariate system this approach can be used to reduce the dimensionality of the problem in a rational and consistent way, and suppress the strong noise amplification effects often encountered with expression profile data. Non-linear and higher-order Markov behavior of the network are also determined in this self-consistent method. In data sets from yeast, we calculate the Markov matrix and the gene classes based on the linear-Markov network. These results compare favorably with previously used methods like cluster analysis. Our dynamic method appears to give a broad and general framework for data analysis and modeling of gene expression arrays. Electronic Publication  相似文献   

17.
Based on theoretical issues and neurobiological evidence, considerable interest has recently focused on dynamic computational elements in neural systems. Such elements respond to stimuli by altering their dynamical behavior rather than by changing a scalar output. In particular, neural oscillators capable of chaotic dynamics represent a potentially very rich substrate for complex spatiotemporal information processing. However, the response properties of such systems must be studied in detail before they can be used as computational elements in neural models. In this paper, we focus on the response of a very simple discrete-time neural oscillator model to a fixed input. We show that the oscillator responds to the stimulus through a fairly complex set of bifurcations, and shows critical switching between attractors. This information can be used to construct very sophisticated dynamic computational elements with well-understood response properties. Examples of such elements are presented in the paper. We end with a brief discussion of simple architectures for networks of dynamical elements, and the relevance of our results to neurobiological models. Received: 7 August 1997 / Accepted in revised form: 22 April 1998  相似文献   

18.
The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+)-spiking behavior as well as key dendritic active properties, including Ca(2+) spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.  相似文献   

19.

Background  

Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype.  相似文献   

20.
A quantitative analysis of naturally-occurring regulatory networks, especially those present in mammalian cells, is difficult due to their high complexity. Much simpler gene networks can be engineered in model organisms and analyzed as isolated regulatory modules. Recently, several synthetic networks have been constructed in mammalian systems. However, most of these engineered mammalian networks have been characterized using steady-state population level measurements. Here, we use an integrated experimental-computational approach to analyze the dynamical response of a synthetic positive feedback network in individual mammalian cells. We observe a switch-like activation of the network with variable delay times in individual cells. In agreement with a stochastic model of the network, we find that increasing the strength of the positive feedback results in a decrease in the mean delay time and a more coherent activation of individual cells. Our results are important for gaining insight into biological processes which rely on positive feedback regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号