首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Reduced efficacy of cardioprotective interventions in the aged female heart, including estrogen replacement, highlights the need for alternative therapeutics to reduce myocardial ischemia-reperfusion (I/R) injury in postmenopausal women. Here, we sought to determine the efficacy of protein kinase-Cε (PKCε)-mediated cardioprotection in the aged, estradiol-deficient rat heart. Infarct size and functional recovery were assessed in Langendorff-perfused hearts from adult (5 mo) or aged (23 mo) female Fisher 344 ovary-intact or ovariectomized (OVX) rats administered a PKCε-activator, receptor for activated C kinase (ψεRACK) prior to 47-min ischemia and 60-min reperfusion. Proteomic analysis was conducted on left ventricular mitochondrial fractions treated with ψεRACK prior to I/R, utilizing isobaric tags for relative and absolute quantitation (iTRAQ) 8plex labeling and tandem mass spectrometry. Real-time PCR was utilized to assess connexin 43 (Cx43) and RACK2 mRNA post-I/R. Greater infarct size in aged OVX (78%) vs. adult (37%) was reduced by ψεRACK (35%, P < 0.0001) and associated with greater mitochondrial PKCε localization (P < 0.0003). Proteomic analysis revealed three novel mitochondrial targets of PKCε-mediated cardioprotection with aging (P < 0.05): the antioxidant enzymes glutathione peroxidase (GPX) and MnSOD2, and heat shock protein 10. Finally, decreased levels of Cx43 and RACK2 mRNA seen with age were partially abrogated by administration of ψεRACK (P < 0.05). The mechanisms described here may represent important therapeutic candidates for the treatment of acute myocardial infarction in postmenopausal women and age-associated estradiol deficiency.  相似文献   

2.
Renal function and blood flow decline during aging in association with a decrease in the number of intrarenal vessels, but if loss of estrogen contributes to this microvascular, rarefaction remains unclear. We tested the hypothesis that the decreased renal microvascular density with age is aggravated by loss of estrogen. Six-month-old female C57/BL6 mice underwent ovariectomy (Ovx) or sham operation and then were allowed to age to 18-22 mo. Another comparable group was replenished with estrogen after Ovx (Ovx+E), while a 6-mo-old group served as young controls. Kidneys were then dissected for evaluation of microvascular density (by micro-computed tomography) and angiogenic and fibrogenic factors. Cortical density of small microvessels (20-200 μm) was decreased in all aged groups compared with young controls (30.3 ± 5.8 vessels/mm2, P < 0.05), but tended to be lower in sham compared with Ovx and Ovx+E (9.9 ± 1.7 vs. 17.2 ± 4.2 and 18 ± 3.0 vessels/mm2, P = 0.08 and P = 0.02, respectively). Cortical density of larger microvessels (200-500 μm) decreased only in aged sham (P = 0.04 vs. young control), and proangiogenic signaling was attenuated. On the other hand, renal fibrogenic mechanisms were aggravated in aged Ovx compared with aged sham, but blunted in Ovx+E, in association with downregulated transforming growth factor-β signaling and decreased oxidative stress in the kidney. Therefore, aging induced in female mice renal cortical microvascular loss, which was likely not mediated by loss of endogenous estrogen. However, estrogen may play a role in protecting the kidney by decreasing oxidative stress and attenuating mechanisms linked to renal interstitial fibrosis.  相似文献   

3.
Women with functional ovaries have a lower cardiovascular risk than men and postmenopausal women. However, estrogen replacement therapy remains controversial. This study examined the effect of ovarian hormone deficiency and estrogen replacement on ventricular myocyte contractile function and PKB/Akt activation. Nulliparous female rats were subjected to bilateral ovariectomy (Ovx) or sham operation (sham). A subgroup of Ovx rats received estrogen (E(2)) replacement (40 microg. kg(-1). day(-1)) for 8 weeks. Mechanical and intracellular Ca(2+) properties were evaluated including peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR(90)), maximal velocity of shortening/relengthening (+/-dL/dt), fura 2 fluorescence intensity (FFI), and decay rate. Levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), phospholamban (PLB), and Akt were assessed by Western blot. Ovx promoted body weight gain associated with reduced serum E(2) and uterine weight, all of which were abolished by E(2). Ovx depressed PS and +/-dL/dt, prolonged TPS, TR(90), and decay rate, and enhanced resting FFI, all of which, with the exception of TPS, were restored by E(2). Ovx did not alter the levels of SERCA2a, PLB, and total Akt, but significantly reduced Akt activation [phosphorylated Akt (pAkt)], pAkt/Akt, and the SERCA2a-to-PLB ratio. These alterations in protein expression were restored by E(2). E(2) enhanced PS and +dL/dt in vitro, which was abolished by the E(2) receptor antagonist ICI-182780. Ovx reduced myocyte Ca(2+) responsiveness and lessened stimulating frequency-induced decline in PS, both ablated by E(2). These data suggest that mechanical and protein functions of ventricular myocytes are directly regulated by E(2).  相似文献   

4.
Inflammation is a key element in many cardiovascular diseases. Both estrogen loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory molecules synthesized by various cytochrome P450 (Cyp) enzymes from arachidonic acid. EETs are in the third (Cytochrome P450) pathway of arachindonic acid metabolism, others being cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti-inflammatory EETs. Adult (6 mo) and aged (22 mo) ovariectomized rats with (OP) and without (Ovx) 17-∃-estradiol replacement were used in this study. Mass spectrometry was used to measure levels of EETs and their metabolites, dihydroxyeicosatrienoic acids (DHETs). Levels of Cyp2C2, Cyp2C6, and Cyp2J2, the principal Cyps responsible for EETs synthesis, as well as soluble epoxide hydrolase (sEH), which metabolizes EETS to DHETs, were determined via western blot. Overall Cyp levels decreased with age, though Cyp2C6 increased in the liver. sEH was increased in the kidney with estrogen replacement. Despite protein changes, no differences were measured in plasma or aortic tissue levels of EETs. However, plasma 14,15 DHET was increased in aged Ovx, and 5,6 DHET in adult OP. In conclusion neither aging nor estrogen loss decreased the anti-inflammatory EETs in the cardiovascular system.  相似文献   

5.
The effect of low serum estrogen levels on urinary bladder function remains poorly understood. Using a rabbit model, we analyzed the effects of estrogen on the expression of the isoforms of myosin, the molecular motor for muscle contraction, in detrusor smooth muscle. Expression of myosin heavy chain (MHC) isoforms, which differ in the COOH-terminal (SM1 and SM2) and the NH(2)-terminal (SM-A and SM-B) regions as a result of alternative splicing of the mRNA at either the 3'- or 5'-ends, was analyzed in age-matched female rabbits that were sham operated, ovariectomized (Ovx), and given estrogen after ovariectomy (4 rabbits/group). Ovx rabbits showed a significant decrease in the overall MHC content per gram of wet detrusor smooth muscle compared with controls (P < 0.04), which was reversed by estrogen replacement (P < 0.02). MHC content, as a proportion of total milligram of protein in the bladder tissue extracted, was also increased in estrogen-treated Ovx rabbits. Quantitative competitive RT-PCR revealed 1.72-, 2.63-, and 5.82 x 10(6) copies of MHC mRNA/100 ng total mRNA in Ovx, control, and estrogen-treated rabbits, respectively (P < 0.01). RT-PCR analysis using oligonucleotides specific for the region containing the SM1/SM2 MHC alternative splice sites indicated a lower SM2-to-SM1 ratio in estrogen-treated compared with control and Ovx rabbits (P < 0.05). Similarly, SDS-PAGE analysis of extracted myosin from estrogen-treated rabbits revealed a significantly lower SM2-to-SM1 isoform ratio compared with control and Ovx rabbits (P < 0.05). Expression of the SM-A and SM-B isoforms was not affected. These results indicate that myosin content is increased upon estrogen replacement in Ovx rabbits and that the abundance of SM1 relative to SM2 is greater in estrogen-treated rabbits compared with normal and Ovx rabbits. These data suggest that estrogen affects alternative splicing at the 3'-end of the MHC pre-mRNA to increase the proportion of SM1 vs. SM2.  相似文献   

6.
Protein kinase C (PKC) is a family of enzymes detected in a diverse range of cell types where they regulate various cellular functions such as proliferation, differentiation, cytoskeletal remodelling, cytokine production, and receptor-mediated signal transduction. In this study we have analyzed the expression of 11 PKC isoforms (-alpha, -beta(I), -beta(II), -gamma, -delta, -eta, -theta, -epsilon, -zeta, -iota/lambda, and -micro) in osteoblasts from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) in comparison with osteoblasts from post-traumatic (PT) patients. By Western blotting analysis, nine isoforms, -alpha, -beta(I), -beta(II), -delta, -theta, - epsilon, -zeta, - iota/lambda, and -micro, were detected in osteoblasts. In RA and OA patients, PKC -theta and -micro were greater expressed whereas PKC-epsilon and -zeta decreased when compared with normal cells. The subcellular distribution and quantitative differences were confirmed by immuno-electron microscopy. Furthermore, we demonstrated that treatment with the proinflammatory cytokines, IL-1beta and TNF-alpha, significantly decreased PKC-zeta expression in PT osteoblasts. This suggests that proinflammatory cytokines can modulate the expression of this PKC isoform in osteoblasts in a way which is similar to changes detected in arthritic patients.  相似文献   

7.
Insulin regulates a diverse array of signaling pathways involved in the control of growth, differentiation, proliferation, and metabolism. Insulin increases in glucose uptake via a protein kinase C-dependent pathway in target tissues such as fat and muscle are well documented. Insulin-regulated events, however, occur in all cells. The utilization of glucose as a preferred energy source is a ubiquitous event in eukaryotic cells. In NIH-3T3 fibroblasts, insulin treatment increased levels of the cPKC and nPKC activator, diacylglycerol. Insulin-responsive 2-[(3)H]deoxyglucose uptake was stimulated in a dose-dependent manner. The overexpression of protein kinase C (PKC)betaI, -betaII, -delta, -epsilon, and -zeta was used to investigate the specificity of PKC isozymes for insulin-sensitive glucose uptake. The stable overexpression of PKCbetaII, -delta, and -epsilon resulted in increases in insulin-stimulated 2-[(3)H]deoxyglucose uptake compared to vector control cells, while basal 2-deoxyglucose uptake levels were not elevated. Overexpression of PKCbetaI and PKCzeta isozymes had no further effect on basal or insulin-stimulated 2-deoxyglucose uptake. The PKC-specific inhibitor, CGP41251, blocked insulin effects on 2-deoxyglucose uptake but not its effects on tyrosine phosphorylation of cellular substrates. Insulin-stimulated 3-O-methylglucose uptake was also greater in cells overexpressing PKCbetaII, -delta, and -epsilon, compared to control cells. The increased responsiveness was not accompanied by conversion of 3T3 cells to the adipocyte phenotype or the increased expression of insulin receptors or glucose transporters (GLUT1-type). Insulin-stimulated recruitment of GLUT1 to plasma membranes of cells overexpressing PKCbetaII, -delta, and -epsilon, was greater than that in control cells. The data suggest that more than one PKC isozyme is involved in insulin signaling pathways in fibroblasts, resulting in increased GLUT1 transporter recruitment to cell membranes.  相似文献   

8.
In adult heart, selective PKCepsilon activation limits ischemia (I)-reperfusion (R) damage and mimics the protection associated with ischemic preconditioning. We sought to determine whether local delivery of PKCepsilon activator peptide psiepsilon-receptor for activated C-kinase (psiepsilon-RACK) is sufficient to produce a similarly protected phenotype in aged hearts. Langendorff-perfused hearts isolated from adult (5 mo; n = 9) and aged (24 mo; n = 9) male Fisher 344 rats were perfused with psiepsilon-RACK conjugated to Tat (500 nM) or Tat only (500 nM) for 10 min before global 31-min ischemia. Western blotting was used to measure mitochondrial targeting of PKCepsilon, PKCdelta, phospho (p)-GSK-3beta (Ser(9)) and GSK-3beta in hearts snap-frozen during I. Recovery of left ventricular developed pressure was significantly improved by psiepsilon-RACK (P < 0.01) and infarct size reduced in 24-mo rats vs. age-matched controls (60% vs. 34%; P < 0.01). Mitochondrial PKCepsilon levels were 30% greater during I with psiepsilon-RACK in aged vs. control rats (P < 0.01). Interestingly, mitochondrial GSK-3beta levels were threefold greater in aged vs. adult rats during I, and psiepsilon-RACK prevented this increase (P < 0.01). Mitochondrial p-GSK-3beta levels were also greater in aged rats after psiepsilon-RACK (P < 0.01), and subsequent inhibition of GSK-3beta with SB-216763 (3 muM) before I/R elicited protection similar to that of psiepsilon-RACK (n = 3/group). Mitochondrial proteomic analysis further identified group differences in the F(1)-ATPase beta-subunit, and coimmunoprecipitation studies revealed a novel interaction with PKCepsilon. F(1)-ATPase-PKCepsilon association was affected by psiepsilon-RACK in adult but not aged rats. Our results provide evidence, for the first time, for PKCepsilon-mediated protection in aged rat heart after I/R and suggest a central role for mitochondrial GSK-3beta but not F(1)-ATPase as a potential target of PKCepsilon to limit I/R damage with aging.  相似文献   

9.
We examined effects of 4 wk of food restriction on ovariectomy-related changes in muscle, bone, and plasma insulin-like growth factor I (IGF-I). Female Sprague-Dawley rats (7 mo old) were assigned to freely eating groups: sham-operated (Sham), ovariectomized (Ovx-AL), and estrogen (estradiol)-replaced Ovx (Ovx+E(2)). Ovx rats were also pair fed with Sham (Ovx-PF) or weight matched with Sham by food restriction (Ovx-FR). Ovx-AL and Ovx-PF rats had similar estrogen status and body weight; therefore, the groups were combined (group: Ovx). After treatment, body weight was approximately 10% greater in Ovx than in Sham rats (P < 0.05), and muscle weight-to-body weight ratios were comparable among all groups. Bone mineral contents of whole tibiae in Ovx-FR and Ovx were approximately 15% (P < 0.05) and approximately 6% lower than in Sham rats (P < 0.05), respectively. Plasma IGF-I was approximately 30% higher in Ovx than in Sham (P < 0.05) but was similar between Sham and Ovx-FR. IGF-I was highly correlated with body weight and muscle mass. Within non-estrogen-replaced Ovx rats, IGF-I explained approximately 19% of variance in bone mineral content after accounting for variance attributable to body weight. Findings suggest that estrogen acts indirectly on skeletal muscle and bone in rats through regulation of body growth by factors such as IGF-I.  相似文献   

10.
PKC has been shown to regulate epithelial Cl(-) secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expression and activity were assessed by Western blotting and in vitro kinase assays, respectively. PMA (an activator of PKC) alone had no effect on duodenal bicarbonate secretion or short-circuit current (I(sc)). When PMA and dibutyryl-cAMP (db-cAMP) were added simultaneously, PMA failed to alter db-cAMP-stimulated duodenal bicarbonate secretion or I(sc) (P > 0.05). However, a 1-h preincubation with PMA potentiated db-cAMP-stimulated duodenal bicarbonate secretion and I(sc) in a concentration-dependent manner (from 10(-8) to 10(-5)M) (P < 0.05). PMA preincubation had no effects on carbachol- or heat-stable toxin-stimulated bicarbonate secretion. Western blot analysis revealed that PKCalpha, -gamma, -epsilon, -, -micro, and -iota/lambda were expressed in murine duodenal mucosa. Ro 31-8220 (an inhibitor active against PKCepsilon, -alpha, -beta, and -gamma), but not G? 6983 (an inhibitor active against PKCalpha, -gamma, -beta, and -delta), reversed the potentiating effect of PMA on db-cAMP-stimulated bicarbonate secretion. PMA also time- and concentration-dependently increased the activity of PKCepsilon, an effect that was prevented by Ro 31-8220 but not G? 6983. These results demonstrate that activation of PKC potentiates cAMP-stimulated duodenal bicarbonate secretion, whereas it does not modify basal secretion. The effect of PKC on cAMP-stimulated bicarbonate secretion is mediated by the PKCepsilon isoform.  相似文献   

11.
Sildenafil citrate (Viagra) is the most widely used pharmacological drug for treating erectile dysfunction in men. It has potent cardioprotective effects against ischemia-reperfusion injury via nitric oxide and opening of mitochondrial ATP-sensitive K(+) channels. We further investigated the role of protein kinase C (PKC)-dependent signaling pathway in sildenafil-induced cardioprotection. Rabbits were treated (orally) with sildenafil citrate (1.4 mg/kg) 30 min before index ischemia for 30 min and reperfusion for 3 h. The PKC inhibitor chelerythrine (5 mg/kg i.v.) was given 5 min before sildenafil. Infarct size (% of risk area) reduced from 33.65 +/- 2.17 in the vehicle (saline) group to 15.07 +/- 0.63 in sildenafil-treated groups, a 45% reduction compared with vehicle (mean +/- SE, P < 0.05). Chelerythrine abolished sildenafil-induced protection, as demonstrated by increase in infarct size to 31.14 +/- 2.4 (P < 0.05). Chelerythrine alone had an infarct size of 33.5 +/- 2.5, which was not significantly different compared with DMSO-treated group (36.8 +/- 1.7, P > 0.05). Western blot analysis demonstrated translocation of PKC-alpha, -, and -delta isoforms from cytosol to membrane after treatment with sildenafil. However, no change in the PKC-beta and -epsilon isoforms was observed. These data provide direct evidence of an essential role of PKC, and potentially PKC-alpha, -, and -delta, in sildenafil-induced cardioprotection in the rabbit heart.  相似文献   

12.
Although the mechanisms are not understood, evidence suggests that 17beta-estradiol (E2) confers protection from cardiovascular and renal complications in many diseases. We have reported that E2 decreases angiotensin type 1 receptors (AT1Rs) in different tissues and hypothesize that E2 exerts tonic inhibition on AT1Rs, reducing effects of ANG II. This study determined the effects of E2 and dihydrotestosterone (DHT) on cortical estrogen receptors (ERs) and glomerular AT1R binding in rats. Animals underwent sham operation, ovariectomy (Ovx) or orchidectomy (Cas) and were treated (Ovx +/- E2; Cas +/- DHT) for 3 wk. Cortical ERalpha protein was 2.5 times greater, and ERbeta was 80% less in females vs. males (P < 0.01). Glomerular AT1R binding was lower in females than males [4,657 +/- 838 vs. 7,457 +/- 467 counts per minute (cpm), P < 0.01]. Ovx reduced ERalpha protein by 50%, whereas E2 increased ERalpha expression after Ovx. The decrease in cortical ERalpha in Ovx rats was associated with a significant increase in AT1R binding (6,908 +/- 609 cpm), and E2 prevented this increase. There was no change in ERalpha or AT1R binding following Cas +/- DHT (25 mg) treatment, although Cas did elevate cortical ERbeta (P < 0.01). Interestingly, the high dose DHT (200 mg) elevated ERalpha 150% above intact levels and profoundly decreased AT1R binding (1,824 +/- 705 cpm, P < 0.001 vs. intact male). This indicates that under normal conditions, glomerular AT1R binding is significantly greater in male than female animals, which may be important in development of cardiovascular and renal disease in males. Furthermore, E2 regulates ERalpha and is inversely associated with glomerular AT1R binding, supporting our hypothesis that E2 tonically suppresses AT1Rs and suggesting a potential mechanism for the protective effects of estrogen.  相似文献   

13.
In the present study, we investigated the effect of estradiol and progesterone supplementation on oxidant and antioxidant parameters of renal tissue in ovariectomized and pinealectomized rats. The study was carried out on 36 adult, Sprague-Dawley strain female rats, 6 months of age and weighing 200-250 g. The rats were divided into six groups, each group included six rats: Group 1: Sham-ovariectomized (Sham-Ovx); Group 2: Ovariectomized (Ovx); Group 3: Ovx and estradiol (E) and progesterone (P) supplemented (Ovx+E-P); Group 4: Ovariectomized and sham pinealectomy (Ovx+sham Pnx); Group 5: Ovariectomized+Pinealectomized (Ovx+Pnx); Group 6: Ovariectomized+Pinealectomized+Hormone Supplemented group (Ovx+Pnx+E-P). The levels of malondialdehyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) were analysed in renal tissues of rats. The highest and the lowest levels of MDA were determined in Groups 5 and 1 respectively (p < 0.001). However, GSH and GSH-Px levels demonstrated statistically important decreases in groups 2, 4, 5 (p < 0.001). The findings of this study demonstrate that ovariectomy leads to oxidative damage in renal tissue. Pinealectomy in addition to ovariectomy greatly increases the oxidative damage. However, female sex hormones supplementations to the Ovx and/or Ovx+Pnx rats protected against lipid peroxidation by activating the antioxidant system.  相似文献   

14.
Clonally distributed (clonotypic) antigen receptors on human T lymphocytes (alpha and beta chains) are associated with three invariable T3 polypeptide chains (T3 gamma, delta and epsilon), together forming the T3/T cell receptor complex. Monoclonal antibodies prepared against the two 20-kd T3 polypeptide chains demonstrated that T3-delta and T3-epsilon are distinct polypeptide chains. Only one monoclonal antibody (anti-T3-delta chain) reacted with the T cell surface as judged by indirect immunofluorescence, and by its mitogenicity for quiescent peripheral blood lymphocytes. Immunohistological staining and immunoprecipitation experiments showed that both the T3-delta and T3-epsilon chains are T cell-specific. As seen with the anti-alpha/beta chain reagent WT-31, anti-T3-delta chain monoclonal antibodies stained medullary thymocytes more intensely than cortical thymocytes, whereas the difference between the staining of cortical and medullary thymocytes was generally not apparent with anti-T3-epsilon chain antibodies. Because of this specificity and their ability to react with both the denatured and the native forms of each polypeptide chain, these new monoclonal reagents will be useful tools in studies of the biosynthesis and cell surface expression of the T3/T cell receptor complex during normal and malignant thymic differentiation.  相似文献   

15.
We investigated the effects of estrogen on global myocardial ischemia-reperfusion injury in rats that were ovariectomized (Ovx), sham-operated, or ovariectomized and then given 17beta-estradiol (E(2)beta) supplementation (Ovx+E(2)beta). Hearts were excised, cannulated, perfused with and then immersed in chilled (4 degrees C) cardioplegia solution for 30 min, and then retrogradely perfused with warm (37 degrees C), oxygenated Krebs-Henseleit bicarbonate buffer for 120 min. The coronary flow rate, first derivative of left ventricular pressure, and nitrite production were all significantly lower in Ovx than in sham-operated or Ovx+E(2)beta hearts. However, coronary flow rates or nitrate production were not consistently different throughout the entire reperfusion period. Ca(2+) accumulated more in Ovx rat hearts than in sham-operated or Ovx+E(2)beta hearts, and mitochondrial respiratory function was lower in Ovx hearts than in hearts from the other two groups. Marked interstitial edema and contraction bands were seen in hematoxylin-eosin-stained sections of Ovx rat hearts but not in hearts from either of the other groups. Hematoxylin-basic fuchsin-picric acid-stained sections revealed fewer viable myocytes in hearts from the Ovx group than from the sham or Ovx+E(2)beta group. Transmission electron microscopy demonstrated more severely damaged mitochondria and ultrastructural damage to myocytes in Ovx rat hearts. Our results indicate that estrogen plays a cardioprotective role in global myocardial ischemia-reperfusion injury in female rats.  相似文献   

16.
Earlier studies have demonstrated that aldose reductase (AR) plays a key role in mediating ischemia-reperfusion (I/R) injury. Our objective was to investigate if AR mediates I/R injury by influencing phosphorylation of glycogen synthase kinase-3β (p-GSK3β). To investigate this issue, we used three separate models to study the effects of stress injury on the heart. Hearts isolated from wild-type (WT), human expressing AR transgenic (ARTg), and AR knockout (ARKO) mice were perfused with/without GSK3β inhibitors (SB-216763 and LiCl) and subjected to I/R. Ad-human AR (Ad-hAR)-expressing HL-1 cardiac cells were exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)) conditions. I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD) was used to study if p-GSK3β was affected through increased AR flux. Lactate dehydrogenase (LDH) release and left ventricular developed pressure (LVDP) were measured. LVDP was decreased in hearts from ARTg mice compared with WT and ARKO after I/R, whereas LDH release and apoptotic markers were increased (P < 0.05). p-GSK3β was decreased in ARTg hearts compared with WT and ARKO (P < 0.05). In ARKO, p-GSK3β and apoptotic markers were decreased compared with WT (P < 0.05). WT and ARTg hearts perfused with GSK3β inhibitors improved p-GSK3β expression and LVDP and exhibited decreased LDH release, apoptosis, and mitochondrial pore opening (P < 0.05). Ad-hAR-expressing HL-1 cardiac cells, exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)), had greater LDH release compared with control HL-1 cells (P < 0.05). p-GSK3β was decreased and correlated with increased apoptotic markers in Ad-hAR HL-1 cells (P < 0.05). Treatment with phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) inhibitor increased injury demonstrated by increased LDH release in ARTg, WT, and ARKO hearts and in Ad-hAR-expressing HL-1 cells. Cells treated with protein kinase C (PKC) α/β inhibitor displayed significant increases in p-Akt and p-GSK3β expression, and resulted in decreased LDH release. In summary, AR mediates changes in p-GSK3β, in part, via PKCα/β and Akt during I/R.  相似文献   

17.
We have recently shown that estrogen negatively modulates the hypotensive effect of clonidine (mixed alpha2-/I1-receptor agonist) in female rats and implicates the cardiovascular autonomic control in this interaction. The present study investigated whether this effect of estrogen involves interaction with alpha2- and/or I1-receptors. Changes evoked by a single intraperitoneal injection of rilmenidine (600 microg/kg) or alpha-methyldopa (100 mg/kg), selective I1- and alpha2-receptor agonists, respectively, in blood pressure, hemodynamic variability, and locomotor activity were assessed in radiotelemetered sham-operated and ovariectomized (Ovx) Sprague-Dawley female rats with or without 12-wk estrogen replacement. Three time domain indexes of hemodynamic variability were employed: the standard deviation of mean arterial pressure as a measure of blood pressure variability and the standard deviation of beat-to-beat intervals (SDRR) and the root mean square of successive differences in R-wave-to-R-wave intervals as measures of heart rate variability. In sham-operated rats, rilmenidine or alpha-methyldopa elicited similar hypotension that lasted at least 5 h and was associated with reductions in standard deviation of mean arterial pressure. SDRR was reduced only by alpha-methyldopa. Ovx significantly enhanced the hypotensive response to alpha-methyldopa, in contrast to no effect on rilmenidine hypotension. The enhanced alpha-methyldopa hypotension in Ovx rats was paralleled with further reduction in SDRR and a reduced locomotor activity. Estrogen replacement (17beta-estradiol subcutaneous pellet, 14.2 microg/day, 12 wk) of Ovx rats restored the hemodynamic and locomotor effects of alpha-methyldopa to sham-operated levels. These findings suggest that estrogen downregulates alpha2- but not I1-receptor-mediated hypotension and highlight a role for the cardiac autonomic control in alpha-methyldopa-estrogen interaction.  相似文献   

18.
The catalytic domain of overexpressed protein kinase C (PKC)-delta mediates phorbol 12-myristate 13-acetate (PMA)-induced differentiation or apoptosis in appropriate model cell lines. To define the portions of the catalytic domain that are critical for these isozyme-specific functions, we constructed reciprocal chimeras, PKC-delta/epsilonV5 and -epsilon/deltaV5, by swapping the V5 domains of PKC-delta and -epsilon. PKC-delta/epsilonV5 failed to mediate PMA-induced differentiation of 32D cells, showing the essential nature of the V5 domain for PKC-delta's functionality. The other chimera, PKC-epsilon/deltaV5, endowed inactive PKC-epsilon with nearly all PKC-delta's apoptotic ability, confirming the importance of PKC-delta in this function. Green fluorescent protein (GFP)-tagged PKC-deltaV5 and -epsilon/deltaV5 in A7r5 cells showed substantial basal nuclear localization, while GFP-tagged PKC-epsilon and -delta/epsilonV5 showed significantly less, indicating that the V5 region of PKC-delta contains determinants critical to its nuclear distribution. PKC-epsilon/deltaV5-GFP showed much slower kinetics of translocation to membranes in response to PMA than parental PKC-epsilon, implicating the PKC-epsilonV5 domain in membrane targeting. Thus, the V5 domain is critical in several of the isozyme-specific functions of PKC-delta and -epsilon.  相似文献   

19.
The matrix metalloproteinases (MMPs), in particular, membrane type 1 MMP (MT1-MMP), are increased in the context of myocardial ischemia and reperfusion (I/R) and likely contribute to myocardial dysfunction. One potential upstream induction mechanism for MT1-MMP is endothelin (ET) release and subsequent protein kinase C (PKC) activation. Modulation of ET and PKC signaling with respect to MT1-MMP activity with I/R has yet to be explored. Accordingly, this study examined in vivo MT1-MMP activation during I/R following modification of ET signaling and PKC activation. With the use of a novel fluorogenic microdialysis system, myocardial interstitial MT1-MMP activity was measured in pigs (30 kg; n = 9) during I/R (90 min I/120 min R). Local ET(A) receptor antagonism (BQ-123, 1 microM) and PKC inhibition (chelerythrine, 1 microM) were performed in parallel microdialysis probes. MT1-MMP activity was increased during I/R by 122 +/- 10% (P < 0.05) and was unchanged from baseline with ET antagonism and/or PKC inhibition. Selective PKC isoform induction occurred such that PKC-betaII increased by 198 +/- 31% (P < 0.05). MT1-MMP phosphothreonine, a putative PKC phosphorylation site, was increased by 121 +/- 8% (P < 0.05) in the I/R region. These studies demonstrate for the first time that increased interstitial MT1-MMP activity during I/R is a result of the ET/PKC pathway and may be due to enhanced phosphorylation of MT1-MMP. These findings identify multiple potential targets for modulating a local proteolytic pathway operative during I/R.  相似文献   

20.
Diabetes mellitus and estrogen deficit are known causes of osteopenia in animal models as well as in humans. In the present work, the combined effect of ovariectomy and diabetes was investigated. Diabetes was induced in ovary-intact and ovariectomized female Wistar rats with a single injection (50 mg/kg body weight, i.p.) of streptozotocin. The rats were administered insulin (I) daily or 17-beta estradiol (E2) on alternate days for a period of 35 days and sacrificed. Serum calcium (Ca2+), phosphorus (P), alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP), vertebral ALP, collagen, and glycosaminoglycans were estimated. The levels of serum Ca2+ and P increased in diabetic rats, but decreased after I or E2 treatments. Serum ALP and TRAP activity increased in the ovary-intact and ovariectomized diabetic rats. Vertebral ALP activity increased in ovariectomized diabetic rats, but decreased in diabetic rats, which were treated with I or E2. In the vertebrae, TRAP activity was elevated as a result of diabetes, but this was prevented by insulin or estradiol. Diabetes induced a decrease in total collagen in the vertebrae, while I or E2 treatment induced an increase. The levels of chondroitin sulphate and heparan sulphate decreased significantly in the vertebrae of both ovary-intact and ovariectomized diabetic rats, while hyaluronic acid increased. In conclusion, diabetes and ovariectomy each seem to affect the process of matrix formation and mineralization in the bone, and this is aggravated by the combination of diabetes and ovariectomy. The effects of I and E2 were similar, and both hormones reversed the changes brought about by diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号