首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The timecourse of the uptake of Bohr protons during oxygenation of β-hemocyanin from the vineyard snail Helix pomatia has been studied. It may be concluded that all the Bohr protons are taken up during the conformational change of the protein from the low- to the high oxygen affinity state, a process which appears to be rate limiting at high ligand concentration.  相似文献   

2.
Many teleost fishes have haemoglobins which possess a Root effect, a large Haldane effect and a low buffer capacity. This combination of characteristics influences the interaction between movements of oxygen and carbon dioxide in the red cell, in the respiratory epithelium, and in the tissues. The presence of the Root effect may limit oxygen uptake at the gills due to an accumulation of Bohr protons released upon oxygenation. However, the Root effect is probably important in maintaining or elevating blood PO2 during muscle capillary transit, enhancing oxygen delivery to the tissues.Bohr protons are reversibly bound to haemoglobin. The release of Bohr protons during oxygenation facilitates bicarbonate dehydration at the gills, while Bohr proton binding facilitates CO2 hydration at the tissues. In some teleost fishes, most of the Bohr protons are released and bound to haemoglobin, between 50 and 100% of haemoglobin-oxygen saturation (27). This trait is probably significant in maximizing oxygen uptake at the gills and in conserving body CO2 stores during exposure to hypoxia and exercise, when the lower reaches of the haemoglobin-oxygen equilibrium curve are used.  相似文献   

3.
The contribution of the interaction of chloride ions with deoxy and oxyhemoglobin to the Bohr effect can be described by a simple binding model. Applying this model to experiment data reveals that at physiological pH and ionic strength about half of the release of Bohr protons is due to a difference in chloride ion binding to deoxy- and oxyhemoglobin. The chloride-independent part of the Bohr effect corresponds with the shift in pK which His-146 beta shows upon oxygenation. The proton absorptioon by hemoglobin observed upon oxygenation below pH 6 is apparently due to a chloride-ion-induced proton uptake, which is larger for oxyhemoglobin than for deoxyhemoglobin. The analysis of the experimental data indicates the existence of only two oxygen-linked chloride ion binding sites in both deoxy and oxyhemoglobin. In deoxyhemoglobin the binding sites most likely consist of Val-1 alpha of one chain and Arg-141 alpha of the partner chain. The sites in oxyhemoglobin consist of groups with a pK value in the neutral pH range; they do not contain lysyl or arginyl residues.  相似文献   

4.
Upon trypsinolysis Helix pomatia beta-hemocyanin forms long tubular structures, which appear to be linear polymers of hemocyanin molecules from which the collar structure has been removed. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate shows that only few peptide bonds are hydrolyzed by trypsin. The structure of the polymers has been investigated by electron microscopy, combined with optical diffraction. Preliminary X-ray diffraction data are presented. Functional properties of the polymers are similar to those of the native protein. Both show a calciumion-dependent co-operativity of oxygen binding and a Bohr effect. The results suggest that the collar of a hemocyanin molecule has no special function in the process of (co-operative) oxygen binding, different from that of the wall of the molecule.  相似文献   

5.
The binding of carbon monoxide to alpha and beta-hemocyanin from the snail Helix pomatia was studied under equilibrium conditions. Homotropic interactions upon carbon monoxide binding were much weaker than upon the binding of oxygen. Heterotropic interactions (Bohr effect and calcium-ion effect), however, were just as strong as in the case of the binding of oxygen. For alpha-hemocyanin a linkage has been observed between the binding of carbon monoxide and a change in quaternary structure of the protein.  相似文献   

6.
The pH dependence of the apparent tetramer to dimer dissociation constant has been determined at 20 degrees for both oxy- and deoxyhemoglobins A and Kansas. These measurements were made by three different procedures: gel chromatography, sedimentation velocity, and kinetic methods in either of three buffer systems: 0.05 M cacodylate, Tris, or glycine with 1 mM EDTA and 0.1 M NaCl between pH 6.5 and 11. The tetramer-dimer dissociation constant of human oxyhemoglobin A decreases from about 3.2 X 10(-6) M at pH 6.0 to about 3.2 X 10(-8) M at pH 8.5. The slope of this line indicates that the dissociation of tetramer to dimer is accompanied by the uptake of about 0.6 protons per mol of tetramer in this region. The corresponding dissociation constant for deoxyhemoglobin in the same pH region increases apparently almost linearly from 1.0 x 10(-12) M at pH 6.5 to about 1.0 x 10(-5) M at pH 11. To dimer is associated with the release of about 1.6 protons per mol of tetramer. Comparison of these data with the known proton release accompanying the oxygenation of tetramers confirms that the pH dependence of oxygen binding by dimers must be very small. The present data predict that the overall proton release or uptake per oxygen bound by dimer should be less than 0.1. The tetramer-dimer dissociation equilibria of oxy- and deoxyhemoglobins above pH 8.5 have identical pH dependences. In this range the dissociation constant of deoxy-Hb is about one-tenth that of oxyhemoglobin. Human oxyhemoglobin Kansas is known to have an enhanced tetramer-dimer dissociation compared with that of hemoglobin A. Below pH 8.5 the tetramer-dimer dissociation constant of Hb Kansas is about 400 times greater than that of HbA in the absence of phosphate buffers. In contrast, the tetramer-dimer dissociation constants of deoxyhemoglobins A and Kansas appear to be identical. These findings are consistent with previous structural observations on these hemoglobins. The data on the tetramer-dimer dissociation of human hemoglobin were used to calculate the total free energy of binding of oxygen to the tetramer and the median oxygen pressure on the basis of fundamental linkage relations and a pH-independent estimate of the total free energy of binding oxygen to dimer. Simulated oxygen binding curves were generated with the equations of Ackers and Halvorson (Ackers, G. K., and Halvorson, H. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 4312-4316) by making two assumptions: (a) that the dimers are noncooperative and pH-independent in O2 binding and (b) that the distribution of cooperative energy in the oxygenation of tetramers is independent of pH. We have compared these simulations with experimental data obtained at low protein concentrations (30 to 124 muM heme) to show that the variation in oxygen affinity with pH can be described in terms of the subunit equilibria. We conclude that an accurate analysis of the contributions of individual oxygen binding steps to the Bohr effect cannot be made without considering the contributions of the dimers to oxygen binding...  相似文献   

7.
We have measured the temperature dependence of the oxygen-binding isotherms of human and bovine hemoglobin at pH 9.0 in 0.1 M borate buffer. In both hemoglobins the ionization of the Bohr protons is finished at this pH; therefore, their heat does not interfere with the measurements. Two sets of curves have been obtained, which have been analyzed by either singular or global procedures for estimating the enthalpy changes of subsequent steps of oxygenation. The data indicate that in human hemoglobin the reaction with oxygen is enthalpy driven for steps 1, 2, and 4 while it is entropy driven for step 3. In bovine hemoglobin this phenomenon is even more evident: steps 2 and 4 are enthalpy driven while steps 1 and 3 are entropy driven. The discontinuous distribution of heat at subsequent steps of oxygenation suggests that the T to R transition in hemoglobin is not a monotonic process and involves conformations with novel characteristics.  相似文献   

8.
The temperature dependence of the oxygen equilibrium of tadpole hemoglobin has been determined between 0 degrees and 32 degrees for the unfractionated but phosphate-free lysate and between 12 degrees and 32 degrees for each of the four isolated components between pH 6 and 10 in 0.05 M cacodylate, Tris, or glycine buffers containing 0.1 M NaCl and 1 mM EDTA. Under these conditions the Bohr effect (defined as deltalog p50/deltapH) of the unfractionated lysate is positive at low temperatures between pH 6 and 8.5 and is negative above pH 8.5 to 8.8 at any temperature. As the temperature rises the Bohr effect below pH 8.5 changes greatly. In the interval pH 7.0 to 7.5, the magnitude of the Bohr effect decreases from + 0.28 at 0 degrees to zero at about 24 degrees and becomes negative, as in mammalian hemoglobins, above this temperature. Measurements with the isolated components show that the temperature dependence of oxygen binding for Components I and II and for Components III and IV is very similar. For both sets of components the apparent overall enthalpy of oxygenation at pH 7.5 is about -16.4 kcal/mol and -12.6 kcal/mol at pH 9.5. The measured enthalpies include contributions from the active Bohr groups, the buffer ions themselves, the hemoglobin groups contributing buffering, and any pH-dependent, oxygenation-dependent binding of ions such as chloride by the hemoglobin. The apportioning of the total enthalpy among these various processes remains to be determined. Between pH 8 and 10.5 tadpole oxyhemoglobin undergoes a pH-dependent dissociation from tetramer to dimer. The pH dependence of the apparent tetramer-dimer dissociation constant indicates that at pH 9.5 the dissociation of each tetramer is accompanied by the release of approximately 2 protons. In this pH range the oxygen equilibrium measurements indicate that about 0.5 proton is released for each oxygen molecule bound. The results are consistent with the conclusion that one acid group per alphabeta dimer changes its pK from about 10 to 8 or below upon dissociation of the tetramer.  相似文献   

9.
The number of Bohr protons released upon oxygenation has been measured over a large range of human hemoglobin concentrations (0.02 to 4.5 mM) in the presence of equimolar amounts of D-glycerate 2,3-bisphosphate. From these data the association constants for the binding of this organic phosphate to deoxyhemoglobin and oxyhemoglobin were calculated at different pH values. The maximum number of protons absorbed upon binding to oxyhemoglobin was determined as well. The maximum number of protons bound to deoxyhemoglobin upon binding of D-glycerate 2,3-bisphosphate was measured independently. From the pH dependence of the association constants and the maximum number of protons absorbed it could be concluded that only one D-glycerate 2,3-bisphosphate can be bound to both deoxyhemoglobin and oxyhemoglobin.  相似文献   

10.
T Y Fang  M Zou  V Simplaceanu  N T Ho  C Ho 《Biochemistry》1999,38(40):13423-13432
Site-directed mutagenesis has been used to construct two mutant recombinant hemoglobins (rHbs), rHb(betaH116Q) and rHb(betaH143S). Purified rHbs were used to assign the C2 proton resonances of beta116His and beta143His and to resolve the ambiguous assignments made over the past years. In the present work, we have identified the C2 proton resonances of two surface histidyl residues of the beta chain, beta116His and beta143His, in both the carbonmonoxy and deoxy forms, by comparing the proton nuclear magnetic resonance (NMR) spectra of human normal adult hemoglobin (Hb A) with those of rHbs. Current assignments plus other previous assignments complete the assignments for all 24 surface histidyl residues of human normal adult hemoglobin. The individual pK values of 24 histidyl residues of Hb A were also measured in deuterium oxide (D(2)O) in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer in the presence of 0.1 M chloride at 29 degrees C by monitoring the shifts of the C2 proton resonances of the histidyl residues as a function of pH. Among those surface histidyl residues, beta146His has the biggest contribution to the alkaline Bohr effect (63% at pH 7.4), and beta143His has the biggest contribution to the acid Bohr effect (71% at pH 5.1). alpha20His, alpha112His, and beta117His have essentially no contribution; alpha50His, alpha72His, alpha89His, beta97His, and beta116His have moderate positive contributions; and beta2His and beta77His have a moderate negative contribution to the Bohr effect. The sum of the contributions from 24 surface histidyl residues accounted for 86% of the alkaline Bohr effect at pH 7.4 and about 55% of the acid Bohr effect at pH 5.1. Although beta143His is located in the binding site for 2,3-bisphosphoglycerate (2,3-BPG) according to the crystal structure of deoxy-Hb A complexed with 2, 3-BPG, beta143His is not essential for the binding of 2,3-BPG in the neutral pH range according to the proton NMR and oxygen affinity studies presented here. With the accurately measured and assigned individual pK values for all surface histidyl residues, it is now possible to evaluate the Bohr effect microscopically for novel recombinant Hbs with important functional properties, such as low oxygen affinity and high cooperativity. The present study further confirms the importance of a global electrostatic network in regulating the Bohr effect of the hemoglobin molecule.  相似文献   

11.
Using NO and CO as ligands the Bohr effect of human hemoglobin has been measured with and without inositolhexophosphate. It appears that in the absence and presence of inositolhexaphosphate hemoglobin shows a distinct ligand specificity with respect to the Bohr effect. Ligation with NO is accompanied by release of a larger number of Bohr effect. It is shown that this latter result is due to the fact that the number of protons taken up upon binding of inositolhexaphosphate to ligated hemoglobin is larger for HbNO than for HbCO. It is suggested that this additional proton uptake is partially due to a restoration of the saltbridge between His 146beta and Asp 94beta upon addition of IHP.  相似文献   

12.
Measurements of oxygen binding to bovine hemoglobin have been carried out over the temperature range 15-37 degrees C at pH 7.33. The standard enthalpy of oxygenation after correction for the heat of oxygen solution and of the Bohr protons is found to be -7.1 or -7.2 kcal/mol in the presence of 0.1 M chloride or bromide, respectively. This value is well below the -14.4 kcal/mol determined for human hemoglobin under identical experimental conditions. As reported by Fronticelli et al. (C. Fronticelli, E. Bucci and A. Razynska, J. Mol. Biol. 202 (1988) 343), the preferential binding of anions by bovine hemoglobin recognizes the various halides. Measurements at various temperatures reveal that this is true only above 25 degrees C. The halide recognition and the less exothermic enthalpy of oxygenation of bovine hemoglobin are probable due to oxygen-linked hydrophobic effects that are larger in bovine than in human hemoglobin.  相似文献   

13.
Alkaline Bohr effect of human hemoglobin Ao   总被引:3,自引:0,他引:3  
  相似文献   

14.
Careful analyses of precise oxygenation curves of hemoglobin (Hb) clearly indicate that, contrary to the common belief, allosteric effectors exert a dramatic control of the oxygenation characteristics of the protein by binding not only to the T (unligated), but also to the R (ligated) state, in a process that is proton-driven and involves proton uptake. The most striking functional changes were obtained when the allosteric effectors were bound to the fully ligated Hb: the oxygen affinity decreased dramatically, Bohr effect was enhanced, and cooperativity of oxygen ligation was almost absent, emulating a Root effect-like behavior. However, structural analysis, such as Cys beta 93 sulfhydryl reactivity and ultraviolet circular dichroism, confirmed that the ligated Hb was in fact in the R state, despite its extremely low affinity state features. These findings provide a new global view for allosteric interactions and invoke for a modern interpretation of the role of allosteric effectors and a reformulation of the Monod-Wyman-Changeaux model for control of allosteric systems, and other complementary models as well.  相似文献   

15.
An extensive and self-consistent set of thermodynamic properties has recently been established for the coupled processes of subunit assembly and ligand binding (oxygen and protons) in human hemoglobin. The resulting thermodynamic values permit a consideration of the possible sources of energetic terms accounting for stability of the tetrameric quaternary structures at different stages of ligation, and of the possible sources of cooperative energy. The analysis indicates that: (a) The change in buried surface ara upon oxygenation (i.e., hydrophobic stabilization) does not play a dominant role in stabilizing the unliganded tetramer relative to the liganded tetramer. (b) The pattern of enthalpic and entropic contributions to the free energies of dimer-tetramer. (c) The thermodynamic results are consistent with a dominant role of increased hydrogen bond formation in the deoxy quaternary structure. (d) Within tetramers the variation in free energy for successive oxygenation steps arises from both enthalpic and entropic contributions and the enthalpic contributions are almost entirely attributable to the heats of Bohr proton release. At pH 7.4 the pattern of thermodynamic values suggests that a large contribution to the free energy of cooperativity may arise from the energetics of Bohr proton release. It is suggested that a combination of proton ionization and hydrogen bonding may account for the main energetic features of cooperativity. Possible contributions from fluctuation behavior cannot presently be evaluated.  相似文献   

16.
Precise oxygen equilibrium curves have been obtained for cobalt hemoglobin at pH values from 5.5 to 8.2. The Hill plots are symmetric having asymptotes with slopes of unity. At pH 7.0, cobalt hemoglobin has p0.5 = 116 toor (15.45 kPa), pm = 117 torr (15.58 kPa) and a Hill coefficient of n = 1.72. The values of n decrease slightly with either decrease or increase of pH; the protein is almost non-cooperative at pH greater than 8.2. The Adair constants have been calculated with a non-linear least-squares program. From deltalnpm/deltapH a maximum of 2.5 Bohr protons was calculated at physiological pH values. The majority of alkaline Bohr protons are released after binding of the first and the third oxygen with maxima at pH 7.6 and 7.3, respectively. The acid Bohr effect was also observed with the majority of the protons taken up following the first and third oxygen bound. Smaller alkaline Bohr effects were obtained by differential titration and at higher pH than that calculated from oxygen equilibria. The discrepancy can be largely attributed to the binding of salt components to cobalt hemoglobin.  相似文献   

17.
In order to solve the problem of an apparent discrepancy between the pH variance of oxygen equilibrium curve and the linear relation between the number of released Bohr protons and the degree of ligation, precise oxygen equilibrium curves of human hemoglobin were determined at a number of pH values from 6.5 to 8.8. From the equilibrium data individual steps (Adair constants), ki (i equals 1, 2, 3, 4), were obtained and the number of Bohr protons (deltaHi+) released on the ith stage of oxygenation was estimated. The pH dependence of k4 was very small, while the other ks strongly depended on pH over the pH range examined. As a consequence, the contribution of each step of oxygen binding to the alkaline Bohr effect nonuniform: deltaH4 was very small compared with deltaH1+, deltaH2+, and deltaH3+. In spite of this, calcuation has shown that the fractional number of released protons is essentially proportional to fractional oxygen saturation because of cooperative effects in hemoglobin. Thus, the present study indicates that the linear relationship between the fractional number of released protons and the degree of ligation, as obtained from titration experiments, is not necessarily incompatible with the pH variance of the shape of the oxygen equilibrium curve. The nonuniform pH depencence of the Adair constants implies that the two-state allosteric model of Monod, J., Wyman, J., and Changeus, J.P. (1965) J. Mol. Biol. 12, 88-118 is not adequate to describe the heterotropic effect caused by protons.  相似文献   

18.
Bacterial reaction centers (RCs) convert light energy into chemical free energy via the double reduction and protonation of the secondary quinone electron acceptor, QB, to the dihydroquinone QBH2. Two RC mutants (M266His --> Leu and M266His --> Ala) with a modified ligand of the non-heme iron have been studied by flash-induced absorbance change spectroscopy. No important changes were observed for the rate constants of the first and second electron transfers between the first quinone electron acceptor, QA, and QB. However, in the M266HL mutant a destabilization of approximately 40 meV of the free energy level of QA- was observed, at variance with the M266HA mutant. The superposition of the three-dimensional X-ray structures of the three proteins in the QA region provides no obvious explanation for the energy modification in the M266HL mutant. The shift of the midpoint redox potential of QA/QA- in M266HL caused accelerated recombination of the charges in the P+ QA- state of the RCs where the native QA was replaced by a low potential anthraquinone (AQA). As previously reported for the native RCs, in the M266HL we observed a biphasicity of the P+ AQA- --> P AQA charge recombination. Interestingly, both phases present a similar acceleration in the M266HL mutant with respect to the wild type. The pH dependencies of the proton uptake upon QA- and QB- formations are superimposable in both mutants but very different from those of native RCs. The data measured in mutants are similar to those that we previously obtained on strains modified at various sites of the cytoplasmic region. The similarity of the response to these different mutations is puzzling, and we propose that it arises from a collective behavior of multiple acidic residues resulting in strongly anticooperative proton binding. The unspecific disappearance of the high pH band of proton uptake observed in all these mutants appears as the natural consequence of removing any member of an interactive proton cluster. This long range interaction also accounts for the similar responses to mutations of the proton uptake pattern induced by either QA- or QB-. We surmise that the presence of an extended protonated water H-bond network providing protons to QB is responsible for these effects.  相似文献   

19.
Electric field induced pH changes of purple membrane suspensions were investigated in the pH range from 4.1 to 7.6 by measuring the absorbance change of pH indicators. In connection with the photocycle and proton pump ability, three different states of bacteriorhodopsin were used: (1) the native purple bacteriorhodopsin (magnesium and calcium ions are bound, the M intermediate exists in the photocycle and protons are pumped), (2) the cation-depleted blue bacteriorhodopsin (no M intermediate), and (3) the regenerated purple bacteriorhodopsin which is produced either by raising the pH or by adding magnesium ions (the M intermediate exists). In the native purple bacteriorhodopsin there are, at least, two types of proton binding sites: one releases protons and the other takes up protons in the presence of the electric field. On the other hand, blue bacteriorhodopsin and the regenerated purple bacteriorhodopsin (pH increase) show neither proton release nor proton uptake. When magnesium ions are added to the suspensions; the field-induced pH change is observed again. Thus, the stability of proton binding depends strongly on the state of bacteriorhodopsin and differences in proton binding are likely to be related to differences in proton pump activity. Furthermore, it is suggested that the appearance of the M intermediate and proton pumping are not necessarily related.  相似文献   

20.
The interaction of magnesium-ADP with skeletal muscle heavy meromyosin has been studied by measuring the accompanying release of protons. Total pH changes of the order of 0.03 were involved, and measurements were performed with a discrimination of some ten-thousandths of a pH unit. At pH 8.0 and 25 degrees C about 0.5 mol of protons per mol of heavy meromyosin is released at saturation. A stoichiometry of binding close to 2 mol of ADP per mol of protein was found, with a binding constant, obtained from the proton release titration curve (pH 8.0, 25 degrees C), of 2 X 10(5) M-1. At 5 degrees C the release of protons per mole is slightly greater, and the binding constant is somewhat increased, reflecting a negative enthalpy of binding. Similar proton release behavior is observed in the presence of manganous ions in place of magnesium. The liberation of protons is thus unrelated to the temperature-dependent isomerization of myosin in the presence of substrate. Alkylation of a reactive thiol group (SH1) does not change the proton liberation at pH 8.0. From the pH dependence of proton release, the association constant of heavy meromyosin with magnesium-ADP at other pH values can be inferred and shows an appreciable rise as the pH increases. The pH-proton release profile also allows the pK of the ionizing groups perturbed by the ligand to be deduced. At least two groups ionizing above pH 7 and one below are involved. Their pK's in the unperturbed state are assigned as 8.5, 9.3, and about 6.6, respectively; they are displaced in the complex to about 8.0, 9.1, and 6.3. A relation to the pH-activity profile of myosin ATPase is indicated. The pH-proton release profile is somewhat changed when the SH1 group is alkylated. Measurements with potassium-ADP, in the absence of magnesium, show that at pH 8.0 there is no proton release but rather a sizeable proton absorption (about 0.5 mol of protons per mol of heavy meromyosin). The association constant derived from the titration curves (pH 8.0, 25 degrees C) is 3 X 10(4) M-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号