首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
LIGHT is a recently identified member of the TNF superfamily that is up-regulated upon activation of T cells. Herpesvirus entry mediator, one of its receptors, is constitutively expressed on immature dendritic cells (DCs). In this report, we demonstrate that LIGHT induces partial DC maturation as demonstrated by Ag presentation and up-regulation of adhesion and costimulatory molecules. LIGHT-stimulated DCs show reduced macropinocytosis and enhanced allogeneic stimulatory capacity but fail to produce significant amounts of IL-12, IL-6, IL-1beta, or TNF-alpha compared with unstimulated DCs. However, LIGHT cooperates with CD154 (CD40 ligand) in DC maturation, with particular potentiation of allogeneic T cell proliferation and cytokine secretion of IL-12, IL-6, and TNF-alpha. Moreover, LIGHT costimulation allows DCs to prime in vitro-enhanced specific CTL responses. Our results suggest that LIGHT plays an important role in DC-mediated immune responses by regulating CD154 signals and represents a potential tool for DC-based cancer immunotherapy.  相似文献   

2.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

3.
4.
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.  相似文献   

5.
An understanding of T cell responses that are crucial for control of Mycobacterium tuberculosis (MTB) has major implications for the development of immune-based interventions. We studied the frequency of purified protein derivative (PPD)-specific CD3) cells expressing interleukin-2 (IL)-2, gamma interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha and IL-10 in HIV-negative pulmonary tuberculosis patients (TB, n=30) as well as in healthy individuals (controls, n=21) from Central Africa. Increased frequencies of PPD-stimulated CD3+ cells expressing IL-2, IFN-gamma, and TNF-alpha in TB were seen when compared with frequencies of controls. The presence of type 1 cytokine biased responses in TB patients was supported by a shift in the distribution pattern of cytokine expression from exclusively IL-2 or TNF-alpha expression seen in controls towards an increased frequency of IFN-gamma/IL-2 or IFN-gamma/TNF-alpha co-expression in TB. Higher levels of PPD-induced IFN-gamma in the supernatants from TB patients than from controls were found, which correlated with its intracellular expression. PPD was a weak inducer of IL-10 in T cells and insufficient in promoting cytokine production in TCRgammadelta+CD3+ cells. Non-specific stimulation with PMA and ionomycin revealed increased frequencies of CD4+ cells expressing IFN-gamma in controls, while expression of IL-2, IL-4, IL-10, IL-13, and TNF-alpha was not different. Non-specific cytokine responses of TCRgammadelta+CD3+ cells were similar in all groups. Pulmonary TB in Central Africa is associated with enhanced expression and secretion of specifically induced cytokines that are frequently implicated in host defense against MTB.  相似文献   

6.
Agents that enhance dendritic cell maturation can enhance T-cell activation and therefore may improve the efficiency of vaccines or improve cellular immunotherapy. Previously, we demonstrated that a novel low-molecular-weight synthetic immune response modifier, R-848, induces IL-12 and IFN-alpha secretion from monocytes and macrophages. Here we report that R-848 induces the maturation of human monocyte-derived dendritic cells. Characteristic of dendritic cell maturation, R-848 treatment induces cell surface expression of CD83 and increases cell surface expression of CD80, CD86, CD40, and HLA-DR. Additionally, R-848 induces cytokine (IL-6, IL-12, TNF-alpha, IFN-alpha) and chemokine (IL-8, MIP-1alpha, MCP-1) secretion from dendritic cells. Most significantly, R-848 enhances dendritic cell antigen presenting function, as measured by increased T-cell proliferation and T-cell cytokine secretion in both allogeneic and autologous T-cell systems. Consequently, low-molecular-weight synthetic molecules such as R-848 and its derivatives may be useful as vaccine adjuvants or as ex vivo stimulators of dendritic cells for cellular immunotherapy.  相似文献   

7.
Mice homozygous for lpr and gld develop profound lymphadenopathy characterized by the expansion of two unusual T cell subsets, a predominant Ly-5(B220)+ CD4- CD8- double negative (DN) population and a minor CD4 dull+ Ly-5(B220)+ population. The mechanisms promoting lymphoproliferation are unknown, but one possibility is a abnormality in the production of cytokines that regulate T cell growth. In the present report, unfractionated LN cells and sorted T cell subsets from C3H-lpr, -gld, and -+/+ mice were compared for spontaneous and induced secretion of a spectrum of lymphokines. In addition, CD4+, CD4 dull+ Ly-5(B220)+, and DN T cells were examined for expression of CD3 epsilon, TCR-alpha/beta heterodimers, Ly-6C, and CD44 and for proliferative responses to immobilized anti-TCR mAb and cofactors. These studies revealed that sorted DN T cells did not secrete IL-3, IL-4, IL-5, IL-6, GM-CSF, TNF-alpha, or IFN-gamma spontaneously or after TCR-alpha/beta cross-linking. In contrast, stimulated unfractionated lpr and gld LN cells proliferated strongly and secreted high levels of IFN-gamma and TNF-alpha and low levels of IL-3, IL-4, and IL-6. Despite a 5- to 10-fold deficit in the frequency of CD4+ and CD8+ T cells, cytokine secretion by lpr and gld LN generally exceeded that of +/+ LN. Comparisons of cytokine secretion by stimulated CD4+ T cells revealed that +/+, lpr, and gld CD4+ Ly-5(B220)- T cells proliferated strongly, but only lpr and gld cells produced significant levels of IFN-gamma. The lpr and gld CD4+ T cells also produced higher levels of TNF-alpha and IL-2 than +/+ cells. In contrast to normal CD4+ T cells, lpr and gld CD4+ Ly-5(B220)+ T cells proliferated weakly and did not secrete TNF-alpha, IL-2, or, in most experiments, IFN-gamma after stimulation. Phenotypic studies of T cell subsets revealed that unstimulated lpr and gld CD4+ Ly-5(B220)- T cells express significantly higher levels of CD44 than +/+ CD4+ T cells. In addition, CD4 dull+ Ly-5(B220)+ cells closely resembled DN T cells in size and expression of TCR-alpha/beta, CD3epsilon, CD44, and Ly-6C. Since elevated CD44 expression is generally associated with T cell activation and only previously activated normal CD4+ T cells produce high levels of IFN-gamma in vitro, our data suggest that lpr and gld CD4+ Ly-5(B220)- T cells contain a higher than normal proportion of primed or memory T cells and thus may be polyclonally activated in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
High mobility group box protein 1 (HMGB1), a DNA binding nuclear and cytosolic protein, is a proinflammatory cytokine released by monocytes and macrophages. This study addressed the hypothesis that HMGB1 is an immunostimulatory signal that induces dendritic cell (DC) maturation. We show that HMGB1, via its B box domain, induced phenotypic maturation of DCs, as evidenced by increased CD83, CD54, CD80, CD40, CD58, and MHC class II expression and decreased CD206 expression. The B box caused increased secretion of the proinflammatory cytokines IL-12, IL-6, IL-1alpha, IL-8, TNF-alpha, and RANTES. B box up-regulated CD83 expression as well as IL-6 secretion via a p38 MAPK-dependent pathway. In the MLR, B box-activated DCs acted as potent stimulators of allogeneic T cells, and the magnitude of the response was equivalent to DCs activated by exposure to LPS, nonmethylated CpG oligonucleotides, or CD40L. Furthermore, B box induced secretion of IL-12 from DCs as well as IL-2 and IFN-gamma secretion from allogeneic T cells, suggesting a Th1 bias. HMGB1 released by necrotic cells may be a signal of tissue or cellular injury that, when sensed by DCs, induces and/or enhances an immune reaction.  相似文献   

9.
BACKGROUND: Interleukin-10 (IL-10) is currently being extensively studied in clinical trials for the treatment of Crohn's disease (CD). Only marginal effects have, however, been reported, and the dose-response curve was bell-shaped contrasting with the reported data from in vitro experiments. AIM: To use another in vitro model to analyze the effect of rhIL-10 and rhIL-4 on the spontaneous mucosal TNF-alpha secretion in patients with CD, and to characterize the phenotype of the cells targeted by rhIL-10. METHODS: Non-inflamed colon biopsies from CD patients were cultured for 16 hours in presence of different concentrations of rhIL-10 or rhIL-4. The numbers of TNF-alpha-secreting cells among isolated lamina propria mononuclear cells (LPMNC) were estimated by Elispot. RESULTS: Both rhIL-10 and rhIL-4 down-regulate TNF-alpha secretion by LPMNC from CD patients, with a more pronounced effect with rhIL-10. These effects were closely linked to the cytokine concentrations used, with a bell-shaped dose-response curve. Residual TNF-alpha secretion, in the presence of optimal rhIL-10 concentration was mainly attributable to CD3+ T cells. In contrast, at higher rhIL-10 concentrations, CD3- cells contributed significantly to the TNF-alpha secretion. CONCLUSIONS: The in vitro model we used, demonstrates that IL-4, but mostly IL-10, efficiently suppresses TNF-alpha secretion in LPMNC from CD patients, with a dose-response curve similar to results obtained in vivo. Resistance at high rhIL-10 concentrations was associated with a change in the phenotype of TNF-alpha-secreting cells.  相似文献   

10.
CD40 ligand (CD40L) is a membrane-bound molecule expressed by activated T cells. CD40L potently induces dendritic cell (DC) maturation and IL-12p70 secretion and plays a critical role during T cell priming in the lymph nodes. IFN-gamma and IL-4 are required for CD40L-mediated cytokine secretion, suggesting that T cells are required for optimal CD40L activity. Because CD40L is rapidly up-regulated by non-T cells during inflammation, CD40 stimulation may also be important at the primary infection site. However, a role for T cells at the earliest stages of infection is unclear. The present study demonstrates that the innate immune cell-derived cytokine, IL-1beta, can increase CD40L-induced cytokine secretion by monocyte-derived DC, CD34(+)-derived DC, and peripheral blood DC independently of T cell-derived cytokines. Furthermore, IL-1beta is constitutively produced by monocyte-derived DC and monocytes, and is increased in response to intact Escherichia coli or CD40L, whereas neither CD34(+)-derived DC nor peripheral blood DC produce IL-1beta. Finally, DC activated with CD40L and IL-1beta induce higher levels of IFN-gamma secretion by T cells compared with DC activated with CD40L alone. Therefore, IL-1beta is the first non-T cell-derived cytokine identified that enhances CD40L-mediated activation of DC. The synergy between CD40L and IL-1beta highlights a potent, T cell-independent mechanism for DC activation during the earliest stages of inflammatory responses.  相似文献   

11.
Extracellular ATP mediates numerous biological activities by interacting with plasma membrane P2 purinergic receptors. Recently, P2 receptors have been described on dendritic cells (DC), but their functional role remains unclear. Proposed functions include improved Ag presentation, cytokine production, chemotaxis, and induction of apoptosis. We investigated the effects of ATP and of other P2 receptor agonists on endocytosis, phenotype, IL-12 secretion, and T cell stimulatory capacity of human monocyte-derived DC. We found that in the presence of extracellular ATP, DC transiently increase their endocytotic activity. Subsequently, DC up-regulate CD86, CD54, and MHC-II; secrete IL-12; and exhibit an improved stimulatory capacity for allogeneic T cells. These effects were more pronounced when chemically modified ATP derivatives with agonistic activity on P2 receptors, which are resistent to degradation by ectonucleotidases, were applied. Furthermore, ATP and TNF-alpha synergized in the activation of DC. Stimulated with a combination of ATP and TNF-alpha, DC expressed the maturation marker CD83, secreted large amounts of IL-12, and were potent stimulators of T cells. In the presence of the P2 receptor antagonist suramin, the effects of ATP were completely abolished. Our results suggest that extracellular ATP may play an important immunomodulatory role by activating DC and by skewing the immune reaction toward a Th1 response through the induction of IL-12 secretion.  相似文献   

12.
The control of latent cytomegalovirus (CMV) infections by the immune system is poorly understood. We have previously shown that CD4+ T cells specific for the human CMV major regulatory protein IE1 are frequent in latently infected healthy blood donors. In order to learn about the possible role of these cells, we have developed IE1-specific CD4+ T-cell clones and, in this study, analyzed their epitope specificity and function in vitro. We measured their cytokine production when stimulated with specific IE1 peptides or whole recombinant IE1 protein. Their cytokine profiles, as deduced from gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and interleukin-4 (IL-4) and IL-6 production, were of the Th0- and Th1-like phenotypes. Supernatants from IE1-specific clones producing IFN-gamma and TNF-alpha were shown to inhibit CMV replication in U373 MG cells. This effect was due, as found by using cytokine-specific neutralizing antibodies, mostly to IFN-gamma, which was secreted at higher levels than TNF-alpha. To better assess the anti-CMV activity of cytokines, recombinant IFN-gamma and TNF-alpha were used and shown to have a synergistic effect on the inhibition of CMV replication and protein expression. Thus, IE1-specific CD4+ T cells display in vitro anti-CMV activity through cytokine secretion and may play a role in the control of in vivo latent infections.  相似文献   

13.
Besides its role as a barrier against potential pathogens, intestinal flora is presumed to protect the host by priming the immunological defense mechanisms. In this respect, the influence of intestinal flora on macrophage precursors was examined, and its modulating effect was compared on LPS-induced cytokine production by macrophages derived from bone marrow and spleen precursors (BMDM and SDM respectively). The regulation of IL-1, IL-6, TNF-alpha and IL-12 production in macrophages from germ-free and from three groups of flora-associated mice, conventional, conventionalized and E. coli-mono-associated mice, was investigated. The whole flora inhibited IL-1, TNF-alpha and IL-12 secretion by BMDM, whereas it had a stimulatory effect on IL-12 secretion by SDM. Implantation of E. coli alone enhanced cytokine secretion by BMDM but had a more limited effect than whole flora on SDM, enhancing only TNF-alpha and IL-12 secretion. Study of expression of mRNA showed a correlation with protein secretion for IL-6 but not for TNF-alpha and IL-1. IL-12 enhancement in BMDM seemed to be dependent on regulation of p35 mRNA expression while it was correlated to increased p40 mRNA expression in SDM. The results demonstrated that intestinal flora modulated bone marrow and spleen macrophage cytokine production in a differential manner and suggested a role for bacteria other than E. coli among the whole flora. The contrasting effects exerted by the intestinal flora on bone marrow and spleen precursors are an interesting observation in view of the different functions of these organs in immunity. The finding that intestinal flora enhanced IL-12 production in spleen is also potentially important since this cytokine is implicated in the determination of the relative levels of Th1 and Th2 responses and plays a pivotal role in host defense against intracellular microorganisms.  相似文献   

14.
The detection of microbial molecules via Toll-like receptors (TLR) in B cells is not well characterized. In this study, we found that both naive and memory B cells lack TLR4 (receptor for LPS) but express TLR9 (receptor for CpG motifs) and produce IL-6, TNF-alpha, and IL-10 upon stimulation with CpG oligonucleotides (ODN), synthetic mimics of microbial DNA. Consistent with the lack of TLR4, purified B cells failed to respond to LPS. Similar to CpG ODN, CD40 ligand (CD40L) alone induced IL-6, TNF-alpha, and IL-10. Production of these cytokines as well as IgM synthesis was synergistically increased when both CpG ODN and CD40L were combined. Unlike IL-6, TNF-alpha, and IL-10, the Th1 cytokine IL-12p70 was detected only when both CpG ODN and CD40L were present, and its induction was independent of B cell receptor cross-linking. CpG ODN did not increase the capacity of CD40L-activated B cells to induce proliferation of naive T cells. However, B cells activated with CpG ODN and CD40L strongly enhanced IFN-gamma production in developing CD4 T cells via IL-12. Together, these results demonstrate that IL-12p70 production in human B cells is under the dual control of microbial stimulation and T cell help. Our findings provide a molecular basis for the potent adjuvant activity of CpG ODN to support humoral immune responses observed in vivo, and for the limited value of LPS.  相似文献   

15.
Mechanisms of IL-10 production in human microglia-T cell interaction.   总被引:3,自引:0,他引:3  
IL-10, a cytokine with important anti-inflammatory properties, is generated within the CNS during neuroinflammation. The mechanism for its production is poorly understood. Since infiltrating lymphocytes come into close proximity with the macrophage-like cells of the CNS, the microglia, we have used an in vitro human microglia-T cell coculture system to address the mechanisms of IL-10 production. We demonstrate that microglia or activated T cells alone secrete negligible amounts of IL-10, but that their coculture results in significant IL-10 production, which was effected by both cell types. IL-10 generation was cell contact dependent, and treatment with anti-CD40, CTLA-4-Fc, or anti-CD23 decreased the IL-10 content in microglia-T cell cocultures. The combination of anti-CD40 and CTLA-4-Fc reduced IL-10 levels to the negligible amounts seen with T cells or microglia in isolation. By also measuring TNF-alpha levels, specificity of cytokine regulation was observed; while anti-CD40 and CTLA-4-Fc reduced IL-10 and TNF-alpha levels, anti-CD23 did not affect TNF-alpha while attenuating IL-10 generation. Anti-very late Ag-4, which decreased TNF-alpha levels, did not affect IL-10. These results implicate the CD40, B7, and CD23 pathways in IL-10 production following microglia-T cell encounter and have relevance to the regulation of an anti-inflammatory response within the CNS.  相似文献   

16.
B cells convert what are normally conditions for Th1 differentiation into an environment suitable for Th2 development. This capacity is dependent on CD40 as B cells from CD40-/- mice do not elicit Th2 differentiation. To elucidate the basis of this effect, we surveyed cytokine RNA made by naive B cells after activation with anti-Ig and anti-CD40. Resting B cells make TGF-beta message only, however, 4 days after activation, RNA encoding IL-6, IL-10, and TNF-alpha was found. The expression of these messages was accelerated by 2 days in the presence of IL-12. The relevance of these observations to T cell differentiation was investigated: addition of OVA peptide to splenic cells from DO.11.10 transgenic mice causes most T cells to make IFN-gamma. Coactivation of B cells in these cultures reduces the number of IFN-gamma-producing T cells and increases the number synthesizing IL-4. Abs to IL-6 and IL-10 block the IL-4 enhancement. Dissection of the component APC demonstrated that interaction of B cells with IL-12-producing dendritic cells is crucial for B cell-mediated IL-4 enhancement: Thus, B cells preactivated in the presence of dendritic cells from IL-12-/- mice show little IL-4-inducing activity when used to activate T cells. This immune regulation is initiated by IL-12 and therefore represents a feedback loop to temper its own dominant effect (IFN-gamma induction).  相似文献   

17.
Mechanisms of ganglioside inhibition of APC function   总被引:4,自引:0,他引:4  
Gangliosides shed by tumor cells exert potent inhibitory effects on cellular immune responses. Here we have studied ganglioside inhibition of APC function. When human monocytes were preincubated in 50 micro M highly purified ganglioside G(D1a), pulsed with tetanus toxoid (TT), and washed, the expected Ag-induced proliferative response of autologous normal T cells added to these monocytes was inhibited by 81%. Strikingly, there was also almost complete (92%) and selective inhibition of the up-regulation of the monocyte costimulatory molecule CD80, while I-CAM-1, LFA-3, HLA-DR, and CD86 expression were unaffected. Purified LPS-stimulated monocytes that had been preincubated in G(D1a) likewise showed inhibition of CD80 up-regulation (59%) as well as down-regulation of CD40 (54%) and impaired release of IL-12 and TNF-alpha (reduced by 59 and 51%). G(D1a)-preincubated human dendritic cells (DC) were also affected. They had reduced constitutive expression of CD40 (33%) and CD80 (61%), but not CD86, and marked inhibition of release of IL-6 (72%), IL-12 (70%), and TNF-alpha (46%). Even when pulsed with TT, these ganglioside-preincubated DC remained deficient in costimulatory molecule expression and cytokine secretion and were unable to induce a normal T cell proliferative response to TT. Finally, significant inhibition of nuclear localization of NF-kappaB proteins in activated DC suggests that disruption of NF-kappaB activation may be one mechanism contributing to ganglioside interference with APC expression of costimulatory molecules and cytokine secretion, which, in turn, may diminish antitumor immune responses.  相似文献   

18.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

19.
IL-12 is a pleiotropic cytokine that plays an important role in innate and adaptive immunity. IL-12 induces T cell proliferation and IFN-gamma secretion from activated T cells. It was also reported that IL-12 prevents apoptosis of CD4(+) T cells. However, the signaling mechanism that regulates these IL-12-induced responses is poorly understood yet. In this study, we demonstrated that IL-12 activates phosphatidylinositol 3-kinase (PI3K)/Akt pathway in murine CD4(+) T cells, and that this signaling pathway is required for IL-12-induced T cell proliferation and antiapoptotic function, but not for IFN-gamma induction. Through PI3K/Akt pathway, IL-12 up-regulates the expression of cell cycle-related molecule such as cyclin D3, and antiapoptotic molecules such as Bcl-2 and cellular inhibitors of apoptosis proteins-2, followed by down-regulation of active caspase-3. These results suggest that PI3K/Akt pathway is critical for mediating IL-12-induced CD4(+) T cell responses such as T cell proliferation and survival.  相似文献   

20.
The immune response to vaccination with bacillus Calmette-Guérin (BCG), the only tuberculosis vaccine available, has not been fully characterized. We used multiparameter flow cytometry to examine specific T cell cytokine production and phenotypic profiles in blood from 10-wk-old infants routinely vaccinated with BCG at birth. Ex vivo stimulation of whole blood with BCG for 12 h induced expression of predominantly IFN-gamma, IL-2, and TNF-alpha in CD4+ T cells in seven distinct cytokine combinations. IL-4 and IL-10 expression was detected in CD4+ T cells at low frequencies and only in cells that did not coexpress type 1 cytokines. Specific CD8+ T cells were less frequent than CD4+ T cells and produced mainly IFN-gamma and/or IL-2 and less TNF-alpha, IL-4, and IL-10. Importantly, many mycobacteria-specific CD4+ and CD8+ T cells did not produce IFN-gamma. The predominant phenotype of BCG-specific type 1 T cells was that of effector cells, i.e., CD45RA-CCR7-CD27+, which may reflect persistence of Mycobacterium bovis BCG in infants until 10 wk of age. Among five phenotypic patterns of CD4+ T cells, central memory cells were more likely to be IL-2+ and effector cells were more likely to be IFN-gamma+. We concluded that neonatal vaccination with BCG induces T cells with a complex pattern of cytokine expression and phenotypes. Measuring IFN-gamma production alone underestimates the magnitude and complexity of the host cytokine response to BCG vaccination and may not be an optimal readout in studies of BCG and novel tuberculosis vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号