首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.  相似文献   

2.
Tcrb-V-specific positive and negative selection of T cells has been well documented. In contrast, nothing is known about Tcra-V-specific selection. Using Tcra-V8-specific KT50 antibody Tcra-V8-specific selection of T cells has been examined. The CD8+ T cell subpopulation bearing Tcra-V8 are shown to be negatively selected by major histocompatibility complex (MHC) class I H-2Kd and H-2Dd/Ld molecules. Furthermore, percentages of these T cells are also influenced by Tcra-V haplotypes. Involvement of non-H-2 self (super)antigens in this MHC class I restricted negative selection, however, remains to be determined.  相似文献   

3.
The origins of "help" in rejection of syngeneic tumors by the CD8 T cell lineage was examined with a model tumor inappropriately expressing novel class I MHC and subject to cytolytic T cell (CTL)-mediated rejection. The requirement for CD4+ Th cells to induce CD8+ CTL effectors in vivo was investigated by using C3H mice selectively depleted of either CD4+ or CD8+ T cells. Rejection of the tumor was vigorous and indistinguishable from normal mice after depletion of CD4+ T cells in vivo. In contrast, in CD8+ T cell-depleted mice tumors grew progressively, confirming that T cells of the CD8+ lineage are required for a tumoricidal immune response, and cells of this lineage are sufficient for a primary response. Taken together, these results demonstrate that, in the absence of CD4+ T cells in vivo, unprimed cells of the CD8+ lineage are fully competent to mount an effective CTL immune response to syngeneic cells expressing novel class I Ag, consistent with the concept that only T cells with class I recognition specificity may be required to satisfy the need for both help and effector functions in the response.  相似文献   

4.
MHC class I molecules are highly polymorphic within populations. This diversity is thought to be the result of selective maintenance of new class I alleles formed by gene conversion. It has been proposed that rare alleles are maintained by their ability to confer resistance to common pathogens. Investigation has focused on differences in the presentation of foreign Ags by class I alleles, but the majority of peptides presented by class I molecules are self peptides used in shaping the naive T cell repertoire. We propose that the key substrate for the natural selection of class I gene conversion variants is the diversity in immune potential formed by new alleles. We show that T cells compete with each other for niches in the thymus and spleen during development, and that competition between different clones is dramatically affected by class I mutations. We also show that peripheral naive T cells proliferate preferentially in the presence of the class I variant that directed T cell development. The data argue that class I gene conversion mutations dramatically affect both the development and the maintenance of the naive CD8 T cell repertoire.  相似文献   

5.
In this work, we have studied the role of the MHC class Ib molecules in the selection and maintenance of CD8(+) T splenocytes. We have compared the CD8(+) T cell repertoires of wild-type, H-2K-deficient, H-2D-deficient, or double knockout C57BL/6 mice. We show that the different CD8(+) repertoires, selected either by class Ia and class Ib or by class Ib molecules only, use the various V alpha (AV) and V beta (BV) rearrangements in the same proportion and without biases in the CDR3 size distribution. Furthermore, we have estimated the size of the BV repertoire in the four different strains of mice. Interestingly, we have found that the BV repertoire size is proportional to the overall number of CD8(+) splenocytes. This observation implies that BV diversity is positively correlated with the number of CD8(+) cells, even when the number of CD8(+) splenocytes is dramatically reduced (90% in the double knockout mice).  相似文献   

6.
During its developmental cycle, the intracellular bacterial pathogen Chlamydia trachomatis remains confined within a protective vacuole known as an inclusion. Nevertheless, CD8(+) T cells that recognize Chlamydia Ags in the context of MHC class I molecules are primed during infection. MHC class I-restricted presentation of these Ags suggests that these proteins or domains from them have access to the host cell cytoplasm. Chlamydia products with access to the host cell cytoplasm define a subset of molecules uniquely positioned to interface with the intracellular environment during the pathogen's developmental cycle. In addition to their use as candidate Ags for stimulating CD8(+) T cells, these proteins represent novel candidates for therapeutic intervention of infection. In this study, we use C. trachomatis-specific murine T cells and an expression-cloning strategy to show that CT442 from Chlamydia is targeted by CD8(+) T cells. CT442, also known as CrpA, is a 15-kDa protein of undefined function that has previously been shown to be associated with the Chlamydia inclusion membrane. We show that: 1) CD8(+) T cells specific for an H-2D(b)-restricted epitope from CrpA are elicited at a significant level (approximately 4% of splenic CD8(+) T cells) in mice in response to infection; 2) the response to this epitope correlates with clearance of the organism from infected mice; and 3) immunization with recombinant vaccinia virus expressing CrpA elicits partial protective immunity to subsequent i.v. challenge with C. trachomatis.  相似文献   

7.
The main source for endogenous peptides presented by the MHC class I (MHC-I) pathway are de novo-synthesized proteins which are degraded via the ubiquitin proteasome pathway. Different MHC-I Ag pools can be distinguished: first, short-lived defective ribosomal products, which are degraded in concert with or shortly after their synthesis, and, second, functional proteins that enter the standard protein life cycle. To compare the contribution of these two Ag sources to the generation of MHC-I-presented peptides, we established murine cell lines which express as a model Ag the HIV-1 Gag polyprotein fused to ubiquitin (Ub) carrying the epitope SIINFEKL (SL). Gag was expressed either in its wild-type form (UbMGagSL) or as a variant UbRGagSL harboring an N-end rule degron signal. Although UbRGagSL displayed wild-type protein stability, its inherent defective ribosomal products rate observed after proteasome shutdown was increased concomitant with enhanced presentation of the SL epitope. In addition, UbRGagSL induces enhanced T cell stimulation of SL-specific B3Z hybridoma cells as measured in vitro and of adoptively transferred TCR-transgenic OT-1 T cells in vivo. Furthermore, an elevated frequency of SL-specific T cells was detected by IFN-gamma ELISPOT after immunization of naive C57BL/6 mice with UbRGagSL/EL4 cells. These results further underline the role of the defective ribosomal product pathway in adaptive immunity.  相似文献   

8.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

9.
The increased potency of high avidity CD8+ T cells for the clearance of viral infections has been well documented. We have previously reported the novel finding that intranasal infection with the paramyxovirus SV5 induces a CD8+ T cell response to the SV5 P protein that is almost exclusively of high avidity. Based on our results that the level of peptide presentation is a critical factor in the selective expansion of high versus low avidity cells in vitro, we hypothesized that the avidity of the anti-viral response generated in vivo could be altered by increasing the turnover of the P protein during viral infection through linkage to ubiquitin (UbP). Infection with a virus expressing UbP (VV-UbP) elicited a significant increase in low avidity cells in both BALB/c and C3H mice compared to the almost exclusively high avidity response elicited by VV-P. Our results are the first demonstration of the control of avidity during the antiviral response through an engineered change to a viral antigen. The implications of our findings for vaccine development are discussed.  相似文献   

10.
The activation of naive CD8+ T cells has been attributed to two mechanisms: cross-priming and direct priming. Cross-priming and direct priming differ in the source of Ag and in the cell that presents the Ag to the responding CD8+ T cells. In cross-priming, exogenous Ag is acquired by professional APCs, such as dendritic cells (DC), which process the Ag into peptides that are subsequently presented. In direct priming, the APCs, which may or may not be DC, synthesize and process the Ag and present it themselves to CD8+ T cells. In this study, we demonstrate that naive CD8+ T cells are activated by a third mechanism, called cross-dressing. In cross-dressing, DC directly acquire MHC class I-peptide complexes from dead, but not live, donor cells by a cell contact-mediated mechanism, and present the intact complexes to naive CD8+ T cells. Such DC are cross-dressed because they are wearing peptide-MHC complexes generated by other cells. CD8+ T cells activated by cross-dressing are restricted to the MHC class I genotype of the donor cells and are specific for peptides generated by the donor cells. In vivo studies demonstrate that optimal priming of CD8+ T cells requires both cross-priming and cross-dressing. Thus, cross-dressing may be an important mechanism by which DC prime naive CD8+ T cells and may explain how CD8+ T cells are primed to Ags that are inefficiently cross-presented.  相似文献   

11.
Spontaneous CD8+ T cell activation in MRL-Faslpr mice is B cell dependent. It is unclear whether this B-dependent activation is mediated by direct Ag presentation via MHC class I proteins (i.e., cross-presentation) or whether activation occurs by an indirect mechanism, e.g., via effects on CD4+ cells. To determine how CD8+ T cell activation is promoted by B cells, we created mixed bone marrow chimeras where direct MHC class I Ag presentation by B cells was abrogated while other leukocyte compartments could express MHC class I. Surprisingly, despite the absence of B cell class I-restricted Ag presentation, CD8+ T cell activation was intact in the chimeric mice. Therefore, the spontaneous B cell-dependent CD8+ T cell activation that occurs in systemic autoimmunity is not due to direct presentation by B cells to CD8+ T cells.  相似文献   

12.
CD8(+) T lymphocytes (T(CD8)) responding to subdominant epitopes provide alternate targets for the immunotherapy of cancer, particularly when self-tolerance limits the response to immunodominant epitopes. However, the mechanisms that promote T(CD8) subdominance to tumor Ags remain obscure. We investigated the basis for the lack of priming against a subdominant tumor epitope following immunization of C57BL/6 (B6) mice with SV40 large tumor Ag (T Ag)-transformed cells. Immunization of B6 mice with wild-type T Ag-transformed cells primes T(CD8) specific for three immunodominant T Ag epitopes (epitopes I, II/III, and IV) but fails to induce T(CD8) specific for the subdominant T Ag epitope V. Using adoptively transferred T(CD8) from epitope V-specific TCR transgenic mice and immunization with T Ag-transformed cells, we demonstrate that the subdominant epitope V is weakly cross-presented relative to immunodominant epitopes derived from the same protein Ag. Priming of naive epitope V-specific TCR transgenic T(CD8) in B6 mice required cross-presentation by host APC. However, robust expansion of these T(CD8) required additional direct presentation of the subdominant epitope by T Ag-transformed cells and was only significant following immunization with T Ag-expressing cells lacking the immunodominant epitopes. These results indicate that limited cross-presentation coupled with competition by immunodominant epitope-specific T(CD8) contributes to the subdominant nature of a tumor-specific epitope. This finding has implications for vaccination strategies targeting T(CD8) responses to cancer.  相似文献   

13.
Earlier studies of influenza-specific CD8(+) T cell immunodominance hierarchies indicated that expression of the H2K(k) MHC class I allele greatly diminishes responses to the H2D(b)-restriced D(b)PA(224) epitope (acid polymerase, residues 224-233 complexed with H2D(b)). The results suggested that the presence of H2K(k) during thymic differentiation led to the deletion of a prominent Vβ7(+) subset of D(b)PA(224)-specific TCRs. The more recent definition of D(b)PA(224)-specific TCR CDR3β repertoires in H2(b) mice provides a new baseline for looking again at this possible H2K(k) effect on D(b)PA(224)-specific TCR selection. We found that immune responses to several H2D(b)- and H2K(b)-restricted influenza epitopes were indeed diminished in H2(bxk) F(1) versus homozygous mice. In the case of D(b)PA(224), lower numbers of naive precursors were part of the explanation, though a similar decrease in those specific for the D(b)NP(366) epitope did not affect response magnitude. Changes in precursor frequency were not associated with any major loss of TCR diversity and could not fully account for the diminished D(b)PA(224)-specific response. Further functional and phenotypic characterization of influenza-specific CD8(+) T cells suggested that the expansion and differentiation of the D(b)PA(224)-specific set is impaired in the H2(bxk) F(1) environment. Thus, the D(b)PA(224) response in H2(bxk) F(1) mice is modulated by factors that affect the generation of naive epitope-specific precursors and the expansion and differentiation of these T cells during infection, rather than clonal deletion of a prominent Vβ7(+) subset. Such findings illustrate the difficulties of predicting and defining the effects of MHC class I diversification on epitope-specific responses.  相似文献   

14.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

15.
NK cells and CD8+ T cells bind MHC-I molecules using distinct topological interactions. Specifically, murine NK inhibitory receptors bind MHC-I molecules at both the MHC-I H chain regions and beta2-microglobulin (beta2m) while TCR engages MHC-I molecules at a region defined solely by the class I H chain and bound peptide. As such, alterations in beta2m are not predicted to influence functional recognition of MHC-I by TCR. We have tested this hypothesis by assessing the capability of xenogeneic beta2m to modify the interaction between TCR and MHC-I. Using a human beta2m-transgenic C57BL/6 mouse model, we show that human beta2m supports formation and expression of H-2K(b) and peptide:H-2K(b) complexes at levels nearly equivalent to those in wild-type mice. Despite this finding, the frequencies of CD8+ single-positive thymocytes in the thymus and mature CD8+ T cells in the periphery were significantly reduced and the TCR Vbeta repertoire of peripheral CD8+ T cells was skewed in the human beta2m-transgenic mice. Furthermore, the ability of mouse beta2m-restricted CTL to functionally recognize human beta2m+ target cells was diminished compared with their ability to recognize mouse beta2m+ target cells. Finally, we provide evidence that this effect is achieved through subtle conformational changes occurring in the distal, peptide-binding region of the MHC-I molecule. Our results indicate that alterations in beta2m influence the ability of TCR to engage MHC-I during normal T cell physiology.  相似文献   

16.
The uptake, transport, and presentation of Ags by lung dendritic cells (DCs) are central to the initiation of CD8 T cell responses against respiratory viruses. Although several studies have demonstrated a critical role of CD11b(low/neg)CD103(+) DCs for the initiation of cytotoxic T cell responses against the influenza virus, the underlying mechanisms for its potent ability to prime CD8 T cells remain poorly understood. Using a novel approach of fluorescent lipophilic dye-labeled influenza virus, we demonstrate that CD11b(low/neg)CD103(+) DCs are the dominant lung DC population transporting influenza virus to the posterior mediastinal lymph node as early as 20 h postinfection. By contrast, CD11b(high)CD103(neg) DCs, although more efficient for taking up the virus within the lung, migrate poorly to the lymph node and remain in the lung to produce proinflammatory cytokines instead. CD11b(low/neg)CD103(+) DCs efficiently load viral peptide onto MHC class I complexes and therefore uniquely possess the capacity to potently induce proliferation of naive CD8 T cells. In addition, the peptide transporters TAP1 and TAP2 are constitutively expressed at higher levels in CD11b(low/neg)CD103(+) DCs, providing, to our knowledge, the first evidence of a distinct regulation of the Ag-processing pathway in these cells. Collectively, these results show that CD11b(low/neg)CD103(+) DCs are functionally specialized for the transport of Ag from the lung to the lymph node and also for efficient processing and presentation of viral Ags to CD8 T cells.  相似文献   

17.
To determine the CD4 or CD8 phenotype of the Th lymphocyte which recognizes in vivo the MHC class I alloantigens, B10 recombinant mice were treated with anti-CD8 or anti-CD4 mAb and immunized with lymphoid cells from donors differing in the K or D region of the MHC. Alloantibodies were evaluated by a 51Cr-release assay or by indirect immunofluorescence. The production of IgG anti-Dd and anti-Kk alloantibodies was increased by the deletion of the CD8+ and absent in mice depleted of the CD4+ subset. These experiments indicate that the helper influence elicited by the recognition of a MHC class I alloantigen in vivo is due to cells of the CD4+CD8- phenotype.  相似文献   

18.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

19.
B6.K(b-)D(b-) mice are devoid of class Ia but express normal levels of class Ib molecules. They have low levels of CD8 T cells in both the thymus as well as peripheral T cell compartments. Although the percentage of splenic CD8 alpha alpha T cells is increased in these animals, approximately 90% of CD8 T cells are CD8 alpha beta. In contrast to B6 animals, most of the CD8 T cells from these mice have a memory phenotype (CD44(high)CD122(high) CD62L(low)) including both CD8 alpha beta and CD8 alpha alpha subsets. In the thymus of B6.K(b-)D(b-) animals, there is a decrease in the percentage of SP CD8 T cells, although most are CD44(low), similar to that seen in B6 mice. The spleens from day 1-old B6 and B6.K(b-)D(b-) mice have a relatively high proportion of CD44(high)CD62L(low) CD8 T cells. However, by day 28 most CD8 T cells in B6 mice have a naive phenotype while in B6.K(b-)D(b-) mice the memory phenotype remains. Unlike CD44(high) cells that are found in B6 animals, most CD44(high) cells from B6.K(b-)D(b-) mice do not secrete IFN-gamma rapidly upon activation. The paucity of CD8 T cells in B6.K(b-)D(b-) mice might be due in part to their inability to undergo homeostatic expansion. Consistent with this, we found that CD8 T cells from these animals expand poorly in X-irradiated syngeneic hosts compared with B6 CD8 T cells that respond to class Ia Ags. We examined homeostatic expansion of B6 CD8 T cells in single as well as double class Ia knockout mice and were able to estimate the fraction of cells reactive against class Ia vs class Ib molecules.  相似文献   

20.
In humans, herpes simplex virus (HSV) establishes latency in sensory nerve ganglia from where it periodically reactivates, whereas in murine models, the virus efficiently establishes latency but rarely reactivates. HSV inhibits MHC class I antigen presentation to CD8 T cells efficiently in humans but poorly in mice, and whether this is a crucial determinant of HSV's ability to reactivate in humans remains uncertain. To test this, we generated a panel of recombinant HSVs that inhibit presentation by murine MHC class I mimicking the effect in humans. Antigen-specific CD8 T cells prevent the in vivo reactivation of wild-type HSV. Despite their presence in the ganglia of latently infected mice, CD8 T cells do not prevent the reactivation of recombinant HSVs that inhibit murine MHC class I in mice. These findings suggest that efficient inhibition of MHC class I by HSV is a key factor in its ability to reactivate in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号