首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated patterns of response as discerned by comprehensive metastasis‐specific analysis in metastatic melanoma patients receiving anti‐PD‐1 antibodies. Bi‐dimensional measurements of every metastasis in patients enrolled in the KEYNOTE‐001 trial at a single institution were obtained at baseline and throughout treatment. Twenty‐seven evaluable patients had 399 baseline metastases measurable on CT imaging. Complete response (CR) which occurred in 52.6% of metastases was smaller (mean 223 mm2 versus 760 mm2, p < .01) and occurred more frequently in the lungs (65% versus 39.4%, p < .01). Response was heterogenous (new/progressing metastases alongside CR metastases) at first assessment in 4/14 patients with objective response (OR) as opposed to 7/13 patients with non‐OR. CR of individual metastases is common and influenced by site and size. Most patients with OR demonstrate homogenous regression in all metastases at the first assessment. In contrast, patients with early heterogeneity had a poor outcome.  相似文献   

2.
Adiponectin, an anti‐inflammatory and insulin‐sensitizing protein secreted from adipose tissue, may be modulated by dietary fatty acids, although the mechanism is not fully known. Our objective was to investigate the effect of long‐chain n‐3 polyunsaturated fatty acids (PUFAs) on adiponectin in cultured human adipocytes, and to elucidate the role of peroxisome proliferator‐activated receptor‐γ (PPARγ) in this regulation. Isolated human adipocytes were cultured for 48 h with 100 µmol/l eicosapentaenoic acid (C20:5n‐3, EPA), docosahexaenoic acid (C22:6n‐3, DHA), palmitic acid (C16:0), 100 µmol/l EPA plus 100 µmol/l DHA, or bovine serum albumin (control). Additionally, adipocytes were treated for 48 h with a PPARγ antagonist (BADGE) or agonist (rosiglitazone) in isolation or in conjunction with either EPA or DHA. At 48 h, EPA and DHA increased (P < 0.05) adiponectin secretion by 88 and 47%, respectively, while EPA, but not DHA, also increased (136%, P < 0.001) cellular adiponectin protein. Interestingly, PPARγ antagonism completely abolished the DHA‐mediated increase in secreted adiponectin, but only partially attenuated the EPA‐mediated response. Thus, EPA's effects on adiponectin do not appear to be entirely PPARγ mediated. Rosiglitazone increased (P < 0.001) the secreted and cellular adiponectin protein (90 and 582%, respectively). Finally, the effects of EPA and rosiglitazone on adiponectin secretion were additive (+230% at 48 h combined, compared to 121 and 124% by EPA or rosiglitazone alone, respectively). Overall, our findings emphasize the therapeutic importance of long‐chain n‐3 PUFA alone, or in combination with a PPARγ agonist, as a stimulator of adiponectin, a key adipokine involved in obesity and related diseases.  相似文献   

3.
Abstract

Peroxisome proliferator-activated receptorγ (PPARγ) can regulate the process of cell apoptosis and is related to the progression of renal disorders. Retinoic acid receptor alpha (RARα) is one of the nuclear receptors involved in a variety of kidney diseases. Renal interstitial fibrosis (RIF) is a common denominator of chronic kidney disease (CKD). This study investigated whether a potential signaling pathway existed between PPARγ and RARα in RIF rats with unilateral ureteral obstruction (UUO). The rats were randomly divided into four groups: a model group subjected to UUO (GU), and three other groups treated with rosiglitazone sodium (GRS), GW9662 and dimethyl sulfoxide (DMSO), n?=?40, respectively. Renal tissues were collected two and four weeks after post-surgery. The relevant indicators were detected. In comparison with the GU group, the expressions of PPARγ and RARα (protein and mRNA) were increased in the GRS group, and decreased in the GW9662 group (all p?<?0.01). The RIF index, mRNA and protein expression of transforming growth factor-β1 (TGF-β1), and the protein expressions of collagen-IV (Col-IV) and fibronectin (FN) in the GRS group were more markedly reduced than those in the GU group; their levels in the GW9662 group were elevated (all p?<?0.01). PPARγ or RARα was negatively correlated to the RIF index, TGF-β1, Col-IV and FN. PPARγ was positively correlated with RARα (all p?<?0.01). In conclusion, PPARγ agonist can elevate the expression of PPARγ or RARα in RIF rats. There might be a potential signaling pathway between PPARγ and RARα in RIF disease.  相似文献   

4.
5.
6.
7.
Objective: Obesity is associated with altered glucocorticoid metabolism, which may impact on hypothalamic‐pituitary‐adrenal axis activity. Here we characterize hepatic 5α‐ and 5β‐reductase in obese rats and their responses to insulin sensitization. Research Methods and Procedures: Hepatic A‐ring reductase protein and mRNA were assessed in lean and obese Zucker rats after insulin sensitization with metformin or rosiglitazone (n = 7 to 8/group). Results: Hepatic 5α‐reductase 1 and 5β‐reductase mRNA and protein (p < 0.01) were increased in obese rats. Insulin sensitization ameliorated increased 5α‐reductase 1 mRNA in obese rats (p < 0.01) and partially reversed increased 5β‐reductase activity. Discussion: Hepatic clearance of glucocorticoids by 5α‐ and 5β‐reductase is increased in obese Zucker rats, and this increase in clearance is attenuated by insulin sensitization. This increased hepatic clearance may underpin compensatory activation of the hypothalamic‐pituitary‐adrenal axis in obesity.  相似文献   

8.
Coffee is the main source of chlorogenic acid in the human diet, and it contains several chlorogenic acid isomers, of which the 5‐caffeoylquinic acid (5‐CQA) is the predominant isomer. Because there are no available data about the action of chlorogenic acids from instant coffee on hepatic glucose‐6‐phosphatase (G‐6‐Pase) activity and blood glucose levels, these effects were investigated in rats. The changes on G‐6‐Pase activity and liver glucose output induced by 5‐CQA were also investigated. Instant coffee extract with high chlorogenic acids content (37.8%) inhibited (p < 0.05) the G‐6‐Pase activity of the hepatocyte microsomal fraction in a dose‐dependent way (up to 53), but IV administration of this extract did not change the glycaemia (p > 0.05). Similarly, 5‐CQA (1 mM) reduced (p < 0.05) the activity of microsomal G‐6‐Pase by about 40%, but had no effect (p > 0.05) on glucose output arising from glycogenolysis in liver perfusion. It was concluded that instant coffee extract with high content of chlorogenic acids inhibited hepatic G‐6‐Pase in vitro, but failed to reduce the glycaemia probably because the coffee chlorogenic acids did not reach enough levels within the hepatocytes to inhibit the G‐6‐Pase and reduce the liver glucose output. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this study was to investigate the effect of isocaloric intake from a high‐fat diet (HFD) on insulin resistance and inflammation in rats. Male Wistar rats were fed on an HFD (n = 12) or control diet (n = 12) for 12 weeks. Subsequently, all animals were euthanized, and blood glucose, insulin, free fatty acids, C‐reactive protein, lipid profile, cytokines and hepatic‐enzyme activity were determined. Carcass chemical composition was also analyzed. During the first and the twelfth weeks of the experimental protocol, the oral glucose tolerance test and insulin tolerance test were performed and demonstrated insulin resistance (P < 0.05) in the HFD group. Although food intake (g) was lower (P < 0.05) in the HFD group compared with the control group, the concentration of total cholesterol, low‐density lipoprotein, C‐reactive protein and liver weight were all significantly higher. The kinase inhibitor of κB, c‐Jun N‐terminal kinase and protein kinase B expressions were determined in the liver and skeletal muscle. After an insulin stimulus, the HFD group demonstrated decreased (P = 0.05) hepatic protein kinase B expression, whereas the kinase inhibitor of κB phospho/total ratio was elevated in the HFD muscle (P = 0.02). In conclusion, the isocaloric intake from the HFD induced insulin resistance, associated with impaired insulin signalling in the liver and an inflammatory response in the muscle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We aimed to assess the feasibility of enhancing the intestinal development of weaned rats using glucagon‐like peptide‐2 (GLP‐2)‐expressing Saccharomyces cerevisiae (S. cerevisiae). GLP‐2‐expressing S. cerevisiae (GLP2‐SC) was generated using a recombinant approach. The diet of weaned rats was supplemented with the GLP2‐SC strain. The average daily gain (ADG), the intestinal morphology and the activities of the digestive enzymes in the jejunum were tested to assess the influence of the GLP2‐SC strain on intestinal development. The proliferation of rat enterocytes was also assessed in vitro. The study revealed that the ADG of the weaned rats that received GLP2‐SC was significantly greater than that of the controls fed a basal diet (Control) and S. cerevisiae harbouring an empty vector (EV‐SC) (P < 0.05) but was equivalent to that of positive control rats fed recombinant human GLP‐2 (rh‐GLP2) (P > 0.05). Furthermore, GLP2‐SC significantly increased villous height (P < 0.01) and digestive enzyme activity (P < 0.05) in the jejunum. Immunohistochemistry analysis further affirmed that enterocyte proliferation was stimulated in rats fed the GLP2‐SC strain, as indicated by the greater number of enterocytes stained with proliferative cell nuclear antigen (P < 0.05). In vitro, the proliferation of rat enterocytes was also stimulated by GLP‐2 expressed by the GLP2‐SC strain (P < 0.01). Herein, the combination of the GLP‐2 approach and probiotic delivery constitute a possible dietary supplement for animals after weaning.  相似文献   

11.
Objective: This study was designed to determine when peroxisome proliferator‐activated receptor γ (PPARγ) is expressed in developing fetal adipose tissue and stromal‐vascular adipose precursor cells derived from adipose tissue. In addition we examined developing tissue for CCAAT/enhancer‐binding protein β (C/EBPβ) expression to see if it was correlated with PPARγ expression. Pituitary function and hormones involved with differentiation (dexamethasone and retinoic acid) were also tested for their effects on PPARγ expression to determine if hormones known to affect differentiation also effect PPARγ expression in vivo and in cell culture. Research Methods and Procedures: Developing subcutaneous adipose tissues from the dorsal region of the fetal pig were collected at different gestation times and assayed using Western blot analysis to determine levels of PPARγ and C/EBPβ. Hypophysectomy was performed on 75‐day pig fetuses and tissue samples were then taken at 105 days for Western blot analysis. Adipose tissue was also taken from postnatal pigs to isolate stromal‐vascular (S‐V) cells. These adipose precursor cells were grown in culture and samples were taken for Western blot analysis to determine expression levels of PPARγ. Results: Our results indicate that PPARγ is expressed as early as 50 days of fetal development in adipose tissue and continues through 105 days. Expression of PPARγ was found to be significantly enhanced in adipose tissue from hypophysectomized fetuses at 105 days of fetal development (p < 0.05). C/EBPβ was not found in 50‐ or 75‐day fetal tissues and was found only at low levels in 105‐day tissues. C/EBPβ was not found in hypophysectomized (hypoxed) 105‐day tissue where PPARγ was elevated. S‐V cells freshly isolated from adipose tissue of 5‐ to 7‐day postnatal pigs showed the expression of PPARγ1. When S‐V cells were cultured, both PPARγ1 and 2 were expressed after the first day and continued as cells differentiated. High concentrations of retinoic acid decreased PPARγ expression in early S‐V cultures (p < 0.05). Discussion: Our data indicate that PPARγ is expressed in fetal adipose tissue very early before distinct fat cells are observed and can be expressed without the expression of C/EBPβ. The increase in PPARγ expression after hypophysectomy may explain the increase in fat cell size under these conditions. Adipose precursor cells (S‐V cells) from 5‐ to 7‐day postnatal pigs also express PPARγ in the tissue before being induced to differentiate in culture. Thus S‐V cells from newborn pig adipose tissue are probably more advanced in development than the 3T3‐L1 cell model. S‐V cells may be in a state where PPARγ and C/EBPα are expressed but new signals or vascularization are needed before cells are fully committed and lipid filling begins.  相似文献   

12.
Pro‐aging effects of endogenous advanced glycation end‐products (AGEs) have been reported, and there is increasing interest in the pro‐inflammatory and ‐fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill‐defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML‐enriched diet on renal aging. Two‐month‐old male, wild‐type (WT) and RAGE?/? C57Bl/6 mice were fed a control or a CML‐enriched diet (200 μg CML/gfood) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE?/? mice, with a predominantly tubular localization. The CML‐rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE?/? mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A‐II (ApoA‐II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA‐II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE?/? mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE?/? mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE?/? mice, suggesting RAGE is an important receptor in so‐called inflamm‐aging.  相似文献   

13.
14.
Objective: To determine the contribution of the peroxisome proliferator‐activated receptor α (PPARα) L162V mutation to the variation of several indexes of body fatness obtained from healthy adults who participated in the Quebec Family Study. Research Methods and Procedures: The PPARα L162V mutation was determined by a mismatch polymerase chain reaction method. Adiposity phenotypes were obtained by standardized anthropometric measurements, underwater weighing technique, and computed tomography. Results: For all adiposity phenotypes, subjects carrying the V162 allele had lower values compared with L162 homozygotes (HMZs) [BMI (kg/m2): 27.8 ± 7.6 vs. 26.0 ± 5.6, p < 0.05; percentage body fat: 28.5 ± 10.7 vs. 25.7 ± 10.1, p < 0.05; waist circumference (cm): 89.0 ± 18.1 vs. 85.7 ± 15.8, p = 0.07; total computed tomography abdominal fat areas (cm2): 406 ± 221 vs. 359 ± 192, p = 0.15; means ± SD for L162 HMZs vs. V162 carriers, respectively]. Differences in cross‐sectional abdominal adipose tissue areas and waist circumference were abolished after adjustment for total body fat mass. Similar trends were observed when results were analyzed by gender, although associations seemed stronger in women. The odds ratio of having a BMI above 30 kg/m2 reached 1.77 (1.02; 3.07, 95% confidence intervals) for L162 HMZs. This risk could be considered marginal on an individual basis, but because 85% of the subjects are affected by this small risk, the impact on the population is important. Discussion: The PPARα V162 allele is associated with reduced adiposity and has a substantial population‐attributable risk.  相似文献   

15.
The aim of the current investigations was to examine the effects of a low‐carbohydrate high‐fat diet (LC‐HFD) on body weight, body composition, growth hormone (GH), IGF‐I, and body weight regain after stopping the dietary intervention and returning the diet back to standard laboratory chow (CH). In study one, both adolescent and mature male Wistar rats were maintained on either an isocaloric LC‐HFD or CH for 16 days before having their diet switched. In study two, mature rats were maintained on either LC‐HFD or CH for 16 days to determine the effects of the LC‐HFD on fat pad weight. LC‐HFD leads to body weight loss in mature rats (P < 0.01) and lack of body weight gain in adolescent rats (P < 0.01). Despite less body weight, increased body fat was observed in rats maintained on LC‐HFD (P < 0.05). Leptin concentrations were higher (P < 0.05), and IGF‐I (P < 0.01) concentrations were reduced in the LC‐HFD rats. When the diet was returned to CH following LC‐HFD, body weight regain was above and beyond that which was lost (P < 0.01). The LC‐HFD resulted in increased body fat and had a negative effect upon both GH and IGF‐I concentrations, which might have implications for the accretion and maintenance of lean body mass (LBM), normal growth rate and overall metabolic health. Moreover, when the LC‐HFD ceases and a high‐carbohydrate diet follows, more body weight is regained as compared to when the LC‐HFD is consumed, in the absence of increased energy intake.  相似文献   

16.
A growing number of evidences accumulated about critical metabolic role of cannabinoid type 1 receptor (CB1), carnitine palmitoyltransferase-1 (CPT1) and peroxisome proliferator-activated receptors (PPARs) in some peripheral tissues, including adipose tissue, liver, skeletal muscle and heart. To better understand the interactions of CB1, CPT1 and PPARs in these tissues, 30 diet-induced obese (DIO) C57BL/6J male mice were obtained, weight-matched and divided into two groups (15 in each group): (i) DIO/vehicle mice (D-Veh) and (ii) DIO/SR141716 mice (D-SR) treated with SR141716 (or rimonabant, a selective CB1 receptor blocker) administered orally (10 mg/kg daily). Another 15 mice fed standard diet (STD) formed the STD/vehicle group (S-Veh). At the end of 3-week treatment, mean body weight was 28.4 ± 0.5, 36.5 ± 0.8, and 30.3 ± 1.2 g for the S-Veh, D-Veh, and D-SR group, respectively (p < 0.05; D-Veh vs. D-SR). Liver weight in the D-SR group was also decreased significantly compared to the D-Veh group (p < 0.05). Serum levels of total cholesterol, high-density lipoprotein cholesterol, leptin and adiponectin in the D-SR group were ameliorated compared to the D-Veh group (p < 0.05). Both qRT-PCR and Western blot assay revealed that CB1 expression levels were efficiently blocked by SR141716 in subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscles and liver (D-SR vs. D-Veh; p < 0.05), whereas there was no significant difference between S-Veh and D-Veh mice (p > 0.05). Simultaneously with the reduction of CB1 expression in the D-SR group, the expression levels of CPT1A isoform (protein) in the liver and heart and CPT1B isoform (protein) in the SAT, VAT, liver and skeletal muscles were significantly increased (p < 0.05; D-SR vs. D-Veh). Interestingly, the CPT1A and CPT1B expression levels in heart were detected slightly. The expression levels of PPARα in the SAT, VAT, liver and skeletal muscles and PPARγ in the SAT and skeletal muscles in the D-SR group were significantly increased compared to the D-Veh mice (p < 0.05). However, the PPARβ expression level differed from that of PPARα and PPARγ. Taken together, these data indicate that the inhibition of CB1 could ameliorate lipid metabolism via the stimulation of the CPT1A and CPT1B expression in vivo. Simultaneously, the PPARα and PPARγ expression levels significantly differed compared to that of PPARβ in obesity and lipid metabolism-related disorders under blockade of CB1. Both the mechanism of the influence of CB1 inhibition on lipid metabolism in the examined tissues and the specific mechanism of PPARα, PPARγ and PPARβ involvement in lipid exchange under these conditions remain to be further elucidated.  相似文献   

17.
Objective: To investigate the effect of a high‐energy (HE) diet on caloric intake, body weight, and related parameters in outbred male Sprague‐Dawley (SD) rats. Research Methods and Procedures: Twenty‐eight SD rats were fed either chow (C) for 19 weeks or HE diet for 14 weeks and then C for 5 weeks. Blood hormones and metabolites were assayed, and expression of uncoupling protein‐1 and hypothalamic energy‐balance‐related genes were determined by Northern blotting and in situ hybridization, respectively. Results: HE rats gained body weight more rapidly than C animals with a range of weight gains, but there was no evidence that weight gain was bimodally distributed. Caloric intake was transiently elevated after introduction of the HE diet. Transfer of HE rats back to C resulted in a drop in caloric intake, but a stable body weight. In terminal analysis, two of four dissected adipose tissue depots were heavier in rats that had previously been fed HE diet. Blood leptin, insulin, glucose, and nonesterified fatty acids were not different between the groups. Uncoupling protein‐1 mRNA was elevated in interscapular brown adipose tissue from HE rats. There was a trend for agouti‐related peptide mRNA in the hypothalamic arcuate nucleus to be higher in HE rats. Discussion: Contrary to other studies of the SD rat on HE diet, body weight and other measured parameters were normally distributed. There was no segregation into two distinct populations on the basis of susceptibility to diet‐induced obesity. This characteristic may be dependent on the breeding colony from which animals were sourced.  相似文献   

18.
Diabetic nephropathy (DN) is a common microvascular complication of diabetes. We used a new DN model in tree shrews to validate the use of bone‐marrow mesenchymal stem cell (BM‐MSC) transplantation to treat DN. The DN tree shrew model was established by a high‐sugar and high‐fat diet and four injections of streptozotocin. 4',6‐Diamidino‐2‐phenylindole labelled BM‐MSCs were injected into tree shrews. The DN tree shrew model was successfully established. Blood glucose was significantly increased ( p < 0.01) during the entire experiment. DN tree shrews showed dyslipidemia, insulin resistance and increased 24‐h proteinuria. At 21 days after BM‐MSC transplantation, glucose and levels of triglycerides, total cholesterol and 24‐h urine volume were lower than in tree shrews with DN alone ( p < 0.01) but were still higher than control values ( p < 0.01). Levels of creatinine and urea nitrogen as well as 24‐h proteinuria were lower for DN tree shrews with BM‐MSCs transplantation than DN alone ( p < 0.05). High‐sugar and high‐fat diet combined with STZ injection can induce a tree shrew model of DN. BM‐MSCs injection can home to damaged kidneys and pancreas, for reduced 24‐h proteinuria and improved insulin resistance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Objective: Adiponectin has been proposed to be related to endothelial function. We have examined the relationship between the increase in adiponectin levels that is associated with troglitazone treatment and endothelium‐dependent vasodilation in type 2 diabetic patients. Research Methods and Procedures: Seventy‐two patients participated in this randomized, placebo‐controlled, double‐blinded study. High‐resolution ultrasound images were used to measure the flow‐mediated dilation (endothelium‐dependent) and nitroglycerin‐induced dilation (endothelium‐independent) of the brachial artery. Laser Doppler perfusion imaging was employed to measure the vascular reactivity in the forearm skin. Results: Troglitazone treatment resulted in an average 75% increase in the adiponectin levels, but no changes were observed in the endothelium‐dependent vasodilation, any other measurement of vascular reactivity, or any other markers of endothelial activation. Also, no changes were observed in the expression of the receptor for advanced glycation end‐products in skin biopsies taken from the forearm. Significant correlations were observed during troglitazone treatment between the changes in the adiponectin levels and the changes in fasting plasma glucose (r = ?0.29, p < 0.05), hemoglobin A1c (r = ?0.30, p < 0.05), total cholesterol (r = 0.25, p < 0.05), and low‐density lipoprotein‐cholesterol (r = 0.34, p < 0.01). Discussion: The increase in adiponectin levels after troglitazone treatment is not associated with an improvement in the endothelium‐dependent vasodilation, indicating that adiponectin is not a major determinant of endothelial function. In addition, receptor for advanced glycation end‐products expression in the skin microcirculation is not affected by troglitazone treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号