首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipocyte lines are a useful tool for adipocyte research. Recently, a new preadipocyte line designated AP‐18 was established from subcutaneous tissue of the C3H/He mouse. In this study, we further characterized AP‐18 cells. Adipocyte differentiation was assessed by accumulation of fat droplets stained by Oil Red O. The expression of the preadipocyte‐ or adipocyte‐specific genes and adipocytokine genes was analysed qualitatively by RT‐PCR and quantitatively by real‐time PCR in comparison with the LM cell, a murine fibroblast line, and the 3T3‐L1 cell, respectively. AP‐18 cells were fibroblastoid in maintenance culture. After the confluence, fat droplets were accumulated in 50–60% of the cells cultured in the medium alone and in 70–90% of the cells cultured with insulin within 2 to 3 weeks. The fat accumulation was not promoted by the addition of dexamethazone, IBMX (3‐isobutyl‐1‐methylxanthine) or troglitazone in combination with insulin, which were obligatory for differentiation of the 3T3‐L1 cell, a murine preadipocyte line. Throughout the differentiation, AP‐18 cells expressed Pref‐1, LPL, C/EBPβ, C/EBPδ, RXRα, C/EBPα, PPARγ, RXRγ, aP2, GLUT4, SCD1, UCP2, UCP3, TNFα, resistin, leptin, adiponectin and PAI‐1 genes, but not the UCP1 gene, indicating that the cell is derived from WAT (white adipose tissue). The time course of these gene expressions was similar to that of 3T3‐L1 cells, although the expressions were slower and lower in AP‐18 cells. These data indicate that AP‐18 cells are preadipocytes originated from WAT and differentiate into adipocytes under more physiological conditions than 3T3‐L1 cells. AP‐18 may be useful in adipocyte research.  相似文献   

2.
3.
在脂肪细胞分化过程中,有约1/3表达的基因被诱导或抑制。通过分析3T3-L1脂肪细胞分化差异表达基因在染色体遗传图上的位置,对共同表达诱导或抑制的基因群体的调控与它们在染色体遗传图上的位置分布的关系进行分析。结果显示这些共同调控的基因除拥有共同的转录调控因子外,未发现在染色体的位置上和它们的共同调控有相关性。  相似文献   

4.
5.
It has been reported that obestatin regulates adipocyte metabolism via receptors on the cell surface. We wondered whether obestatin can interact with intracellular components that activated signalling pathways in adipocytes. Because obestatin (human) only presents one lysine (at position 10), which cannot penetrate the cell membrane, therefore, we used a cell‐permeable peptide TAT (49‐57) as a vector to carry obestatin across the cell membrane. The goal of this study was to further understand the function of obestatin after penetrating the cell membrane. Our results showed that TAT‐obestatin could cross the 3T3‐L1 cell membrane in the absence of cytotoxicity. TAT‐obestatin showed no effect on the proliferation of 3T3‐L1 preadipocytes. In contrast, obestatin significantly stimulated proliferation at a dose of 10‐11 M and 10‐13 M. In addition, TAT‐obestatin demonstrated a more potent inhibitory effect on cell apoptosis induced by serum starvation than that of obestatin. During the progress of adipocyte differentiation, TAT‐obestatin and obestatin had no effect on adipogenesis. In the lipolysis assay, TAT‐obestatin significantly increased glycerol and free fatty acid release from 3T3‐L1 adipocytes after 3 h treatment but showed no significant effect on lipolysis after 24 h and 48 h of treatment. In contrast, obestatin (10‐7 M) had no effect on glycerol release after 3, 24 and 48 h of treatment. The difference between the effect of TAT‐obestatin and obestatin on adipocytes metabolism indicated that TAT‐obestatin may trigger intracellular signalling as well as signalling at the cell membrane. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
在研究胰岛素(Ins)、地塞米松(Dex)和甲基异丁基黄嘌呤(Mix)对脂肪细胞分化过程中PAI-1基因表达的影响基础上,为进一步探讨Ins、Dex调控PAI-1基因转录表达的调控机制,应用DNA重组技术,构建含萤光素酶(luciferase)报告基因和PAI-1启动子不同长度片段的嵌合质粒,转染3T3-L1前脂肪细胞并测定报告基因荧光素酶的活性.结果表明,小鼠PAI-1基因起动子-690至-850碱基序列之间有一个Dex的正调控元件.用计算机软件进行分析发现:Dex顺式元件位于PAI-1启动子的-750至-770碱基序列.其组成为:5′ GGTAACCTCTGTTCTCAT 3′.同时还发现在PAI-1启动子的-720至-740碱基序列中,存在一个C/EBPs的结合元件5′CCAAT3′并用凝胶电泳迁移实验对这些元件进行了鉴定.表明Dex正是通过激活转录因子(糖皮质激素受体,GR)和C/EBPα一起与各自的顺式元件结合来促进PAI-1基因的表达.  相似文献   

7.
前脂肪细胞因子-1(preadipocyte factor 1,Pref-1)是一种含有6个表皮生长因子样重复序列的跨膜蛋白。Pref-1具有抑制脂肪细胞和人骨骼干细胞分化,促进胸腺细胞发育等生物学活性。近年来对于Pref-1在脂肪细胞分化调控中的研究日渐增多,其在肥胖治疗领域的作用尤其受到重视。本文综述了Pref-1近年来的研究进展,为深入研究将其用于肥胖治疗提供参考。  相似文献   

8.
The hormonal regulation of leptin mRNA expression and the association between leptin expression and adipocyte differentiation were examined in primary cultures of porcine S-V cells with Northern blot and immunocytochemical analysis. Seeding for 3 days with fetal bovine serum (FBS) with varying levels of dexamethasone (Dex) increased levels of leptin mRNA in a dosedependent manner in parallel with increases in the proportion of preadipocytes (AD-3 positive cells; AD-3, a preadipocyte marker). Six-day treatment with 10 or 850 nM insulin after FBS+Dex treatment resulted in a similar increase in leptin mRNA expression and morphological differentiation. However, significantly lower levels of leptin mRNA and smaller fat cells were observed in cultures treated with 1 nM insulin or 10 nM insulin-like growth factor-I (IGF-I). Dex-induced increases in leptin mRNA levels and AD-3 cell numbers were blocked completely by the addition of transforming growth factor-β (TGF-β) to FBS+Dex-treated cultures. However TGF-β significantly increased fat cell size and leptin mRNA expression when added to ITS (insulin, 850 nM; transferrin, 5 μg/ml; and selenium, 5 ug/mL) treated cultures during the lipid-filling stage. When added with FBS+DEX for the first 3 days, growth hormone (GH) did not influence the Dex-induced increase in AD-3 cells and leptin mRNA expression, but GH reduced leptin mRNA levels when added with insulin for 6 days after FBS+Dex. These results demonstrated that regulation of leptin mRNA expression by Dex, insulin, IGF-I, TGF-β, and GH may be associated with changes in preadipocyte number and fat cell size.  相似文献   

9.
10.
11.
田志华  杨公社  赵兴波  何大澄 《遗传学报》2003,30(12):1113-1117
通过对不同分化阶段的大鼠前体脂肪细胞中波形纤维蛋白的结构形态和分布的间接免疫荧光观察,发现随着前体脂肪细胞的分化,波形纤维形态结构发生特异性改变,即从前期的围绕细胞核聚集且向细胞周边平行延伸到后期的围绕脂滴间隔形成致密笼状结构。此外,通过地高辛标记的寡核苷酸探针的原位杂交和免疫印迹研究了前体脂肪细胞的分化对波形纤维蛋白基因表达的影响。结果表明,分子量为57kD的波形纤维蛋白在mRNA水平和蛋白水平的表达贯穿于前体脂肪细胞分化的全过程,表达量呈递减趋势。这提示在前体脂肪细胞分化中,波形纤维与脂滴的特异性结合对于脂滴的前体脂肪细胞分化有着功能性的联系,特别是对脂肪细胞的脂滴形成极可能起到支撑的作用。  相似文献   

12.
Using a plasmid bearing chloramphenicol acetyltransferase (CAT) gene controlled by Simian virus 40 (SV40) early promoter/enhancer complex (pA0cat), we analyzed functional enhancer motifs in 3T3-L1 fibroblast and adipocyte cells. Deletion mutant series of pA0 at the enhancer complex showed that gene expression both in fibroblast and adipocyte cells was dependent on a similar set of enhancer motifs. When pA0 was introduced into 3T3-L1 fibroblasts and the cells were induced to differentiate into adipocytes, CAT activity expressed in fibroblasts was suppressed. Experiments with the deletion mutants at the enhancer complex showed that the suppression was not related to any enhancer motif, and CAT activity was observed with a plasmid having only the promoter sequence. When pA0cat was co-transfected with excess of promoter sequence, the suppression in adipocytes was counteracted. This suggested that negativetrans-acting factors of the promoter sequence were responsible for the suppression in adipocytes.Abbreviations CAT chloramphenicol acetyltransferase - CAT the gene encoding CAT - SV40 Simian virus 40 - Asc-P ascorbic acid phosphate  相似文献   

13.
14.
15.
16.
Recent studies suggest that seaweed extracts are a significant source of bioactive compounds comparable to the dietary phytochemicals such as onion and tea extracts. The exploration of natural antioxidants that attenuate oxidative damage is important for developing strategies to treat obesity‐related pathologies. The objective of this study was to screen the effects of seaweed extracts of 49 species on adipocyte differentiation and reactive oxygen species (ROS) production during the adipogenesis in 3T3‐L1 adipocytes, and to investigate their total phenol contents and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging activities. Our results show that high total phenol contents were observed in the extracts of Ecklonia cava (see Table 1 for taxonomic authors) (681.1 ± 16.0 μg gallic acid equivalents [GAE] · g?1), Dictyopteris undulata (641.3 ± 70.7 μg GAE · g?1), and Laurencia intermedia (560.9 ± 48.1 μg GAE · g?1). In addition, DPPH radical scavenging activities were markedly higher in Sargassum macrocarpum (60.2%), Polysiphonia morrowii (55.0%), and Ishige okamurae (52.9%) than those of other seaweed extracts (P < 0.05). Moreover, treatment with several seaweed extracts including D. undulata, Sargassum micracanthum, Chondrus ocellatus, Gelidium amansii, Gracilaria verrucosa, and Grateloupia lanceolata significantly inhibited adipocyte differentiation and ROS production during differentiation of 3T3‐L1 preadipocytes. Furthermore, the production of ROS was positively correlated with lipid accumulation (R2 = 0.8149). According to these preliminary results, some of the seaweed extracts can inhibit ROS generation, which may protect against oxidative stress that is linked to obesity. Further studies are required to determine the molecular mechanism between the verified seaweeds and ROS, and the resulting effects on obesity.
Table 1. List of Korean seaweed extracts of 49 species evaluated in this experiment.
Type No. Scientific name Collection time TP1 (μg GAE · g?1)
Brown macroalgae SE‐1 Chondracanthus tenellus (Harv.) Hommers. April 27, 2006 112.8 ± 15.1lm
SE‐2 Colpomenia sinusa (F. C. Mertens ex Roth) Derbes et Solier in Castagne May 11, 2006 44.0 ± 4.1opqrs
SE‐3 Dictyopteris divaricata (Okamura) Okamura April 6, 2006 41.5 ± 5.6pqrs
SE‐4 Dictyopteris pacifica (Yendo) I. K. Hwang, H.‐S. Kim et W. J. Lee April 27, 2006 80.9 ± 8.3mno
SE‐5 Dictyopteris prolifera (Okamura) Okamura November 26, 2007 48.4 ± 3.0nopqrs
SE‐6 Dictyopteris undulata Holmes July 28, 2007 641.3 ± 70.7b
SE‐7 Dictyota asiatica I. K. Hwang April 6, 2006 52.9 ± 7.6nonopqr
SE‐8 Ecklonia cava Kjellm. October 22, 2006 681.1 ± 16.0a
SE‐9 Ecklonia stolonifera Okamura November 26, 2007 36.5 ± 3.4pqrs
SE‐10 Endarachne binghamiae J. Agardh March 10, 2006 50.4 ± 2.6nopqrs
SE‐11 Hizikia fusiformis (Harv.) Okamura July 23, 2006 16.4 ± 1.2rs
SE‐12 Hydroclathrus clathratus (C. Agardh) M. Howe May 11, 2006 18.1 ± 0.9rs
SE‐13 Ishige okamurae Yendo May 26, 2006 237.4 ± 1.6h
SE‐14 Lethesia difformis (L.) Aresch. May 11, 2006 11.2 ± 1.9s
SE‐15 Myelophycus simplex (Harv.) Papenf. April 27, 2006 39.5 ± 3.2pqrs
SE‐16 Padina arborescens Holmes July 29, 2007 172.9 ± 23.1ij
SE‐17 Sargassum fulvellum (Turner) C. Agardh April 27, 2006 119.1 ± 5.6kl
SE‐18 Sargassum micracanthum (Kütz.) Endl. December 21, 2006 468.0 ± 22.7e
SE‐19 Sargassum patens C. Agardh January 21, 2007 41.5 ± 5.7pqrs
SE‐20 Sargassum confusum C. Agardh f. validum Yendo March 8, 2008 110.9 ± 3.5lm
SE‐21 Sargassum horneri (Turner) C. Agardh March 1, 2006 84.8 ± 9.4lmn
SE‐22 Sargassum macrocarpum C. Agardh January 21, 2007 353.9 ± 59.1g
SE‐23 Sargassum muticum (Yendo) Fensolt January 21, 2007 72.1 ± 14.9nop
SE‐24 Sargassum nipponium Yendo April 6, 2006 54.0 ± 3.5nopqr
SE‐25 Sargassum sagamianum Yendo March 8, 2008 41.0 ± 6.7pqrs
SE‐26 Sargassum thunbergii (Mertens ex Roth) Kuntze July 23, 2006 27.7 ± 0.8qrs
SE‐27 Scytosiphon gracilis Kogame May 26, 2006 30.2 ± 5.6qrs
SE‐28 Scytosiphon lomentaria (Lyngb.) Link May 11, 2006 66.5 ± 8.9nopq
Red macroalgae SE‐29 Bonnemaisonia hamifera Har. April 27, 2006 44.1 ± 2.3opqrs
SE‐30 Callophyllis crispata Okamura May 11, 2006 37.6 ± 12.6pqrs
SE‐31 Chondria crassicaulis Harv. May 11, 2006 45.4 ± 4.4opqrs
SE‐32 Chondrus crispus Stackh. May 26, 2006 40.7 ± 8.0pqrs
SE‐33 Chondrus ocellatus Holmes May 11, 2006 47.2 ± 1.7nopqrs
SE‐34 Gelidium amansii (J. V. Lamour.) J. V. Lamour. April 27, 2006 525.3 ± 35.9d
SE‐35 Gloioperltis furcata (Postels et Rupr.) J. Agardh May 26, 2006 147.7 ± 6.4jk
SE‐36 Gloioperltis complanta (Harv.) Yamada May 26, 2006 58.2 ± 6.4nopq
SE‐37 Gracilaria verrucosa (Hudson) Papenf. March 6, 2008 55.1 ± 7.5nopqr
SE‐38 Grateloupia elliptica Holmes May 26, 2006 154.4 ± 12.9j
SE‐39 Grateloupia filicina (J. V. Lamour.) C. Agardh May 11, 2006 38.2 ± 2.2pqrs
SE‐40 Grateloupia lanceolata (Okamura) Kawag. July 23, 2006 32.7 ± 3.0pqrs
SE‐41 Laurencia intermedia J. V. Lamour. May 11, 2006 560.9 ± 48.1c
SE‐42 Laurencia intricata J. V. Lamour. April 27, 2006 35.4 ± 4.0pqrs
SE‐43 Laurencia okamurae Yamada May 11, 2006 193.2 ± 41.9i
SE‐44 Lomentaria hakodatensis Yendo April 27, 2006 165.2 ± 15.1ij
SE‐45 Polyopes affinis (Harv.) Kawag. et H.‐W. Wang May 26, 2006 42.9 ± 2.3opqrs
SE‐46 Polysiphonia morrowii Harv. May 11, 2006 392.4 ± 40.3f
SE‐47 Prionitis cornea (Okamura) E. Y. Dawson October 22, 2006 47.9 ± 3.6nopqrs
Green macroalgae SE‐48 Enteromorpha prolifera (O. F. Müll.) J. Agardh March 26, 2006 42.0 ± 5.3pqrs
SE‐49 Ulva pertusa Kjellm. April 27, 2006 48.3 ± 3.8nopqrs
  • GAE, gallic acid equivalents; SE, seaweed extracts.
  • 1TP, total phenol content is micrograms of total phenol contents per gram of seaweed extract based on gallic acid as standard. The values are means ± SD from three replications.
  • a–sMeans in the same column not sharing a common letter are significantly different (P < 0.05) by Duncan’s multiple test.

Citing Literature

Number of times cited according to CrossRef: 21

  • Kas?m Cemal Güven, Burak Coban, Osman Özdemir, Pharmacology of Marine Macroalgae, Encyclopedia of Marine Biotechnology, 10.1002/9781119143802, (585-615), (2020). Wiley Online Library
  • Giovanna Bermano, Teodora Stoyanova, Franck Hennequart, Cherry L. Wainwright, Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes, , 10.1016/bs.apha.2019.10.002, (2019). Crossref
  • Ana Rocío Múzquiz de la Garza, Mireya Tapia-Salazar, Maribel Maldonado-Muñiz, Julián de la Rosa-Millán, Janet Alejandra Gutiérrez-Uribe, Liliana Santos-Zea, Bertha Alicia Barba-Dávila, Denis Ricque-Marie, Lucía Elizabeth Cruz-Suárez, Nutraceutical Potential of Five Mexican Brown Seaweeds, BioMed Research International, 10.1155/2019/3795160, 2019 , (1-15), (2019). Crossref
  • M. Lynn Cornish, Alan T. Critchley, Ole G. Mouritsen, A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease, Phycologia, 10.2216/15-77.1, 54 , 6, (649-666), (2019). Crossref
  • Carolina Gonçalves-Fernández, Jorge Sineiro, Ramón Moreira, Oreste Gualillo, Extraction and characterization of phlorotannin-enriched fractions from the Atlantic seaweed Bifurcaria bifurcata and evaluation of their cytotoxic activity in murine cell line, Journal of Applied Phycology, 10.1007/s10811-018-1729-2, (2019). Crossref
  • Noelia Flórez‐Fernández, María P Casas, María Jesús González‐Muñoz, Herminia Domínguez, Microwave hydrogravity pretreatment of Sargassum muticum before solvent extraction of antioxidant and antiobesity compounds, Journal of Chemical Technology & Biotechnology, 10.1002/jctb.5771, 94 , 1, (256-264), (2018). Wiley Online Library
  • Yannick Lerat, M. L. Cornish, Alan T. Critchley, Stéphane La Barre, Stephen S. Bates, Applications of Algal Biomass in Global Food and Feed Markets: From Traditional Usage to the Potential for Functional Products, Blue Biotechnology, 10.1002/9783527801718, (143-189), (2018). Wiley Online Library
  • Gabriele Andressa Zatelli, Ana Cláudia Philippus, Miriam Falkenberg, An overview of odoriferous marine seaweeds of the Dictyopteris genus: insights into their chemical diversity, biological potential and ecological roles, Revista Brasileira de Farmacognosia, 10.1016/j.bjp.2018.01.005, 28 , 2, (243-260), (2018). Crossref
  • Cyr Abel Maranguy Ogandaga, Yeon Ju Na, Sang-Rae Lee, Young Sik Kim, Han Gil Choi, Ki Wan Nam, Wart-like spot formation on the fronds of Chondrus ocellatus (Gigartinales) by a brown alga, Mikrosyphar zosterae (Ectocarpales) in Korea, Journal of Applied Phycology, 10.1007/s10811-016-1028-8, 29 , 5, (2539-2546), (2017). Crossref
  • Fook Yee Chye, Birdie Scott Padam, Seah Young Ng, Innovation and Sustainable Utilization of Seaweeds as Health Foods, Sustainability Challenges in the Agrofood Sector, 10.1002/9781119072737, (390-434), (2017). Wiley Online Library
  • Gaurav Rajauria, Lynn Cornish, Francesco Ometto, Flower E. Msuya, Raffaella Villa, Identification and selection of algae for food, feed, and fuel applications, Seaweed Sustainability, 10.1016/B978-0-12-418697-2.00012-X, (315-345), (2015). Crossref
  • Jatinder Sangha, Owen Wally, Arjun Banskota, Roumiana Stefanova, Jeff Hafting, Alan Critchley, Balakrishnan Prithiviraj, A Cultivated Form of a Red Seaweed (Chondrus crispus), Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans, Marine Drugs, 10.3390/md13106407, 13 , 10, (6407-6424), (2015). Crossref
  • Jung-Ae Kim, Fatih Karadeniz, Byul-Nim Ahn, Myeong Sook Kwon, Ok-Ju Mun, Mihyang Kim, Sang-Hyeon Lee, Ki Hwan Yu, Yuck Yong Kim, Chang-Suk Kong, Sargassum sp. Attenuates Oxidative Stress and Suppresses Lipid Accumulation in vitro, Journal of Life Science, 10.5352/JLS.2014.24.3.274, 24 , 3, (274-283), (2014). Crossref
  • Georgia M. Hart, Tamara Ticktin, Dovi Kelman, Anthony D. Wright, Nicole Tabandera, Contemporary Gathering Practice and Antioxidant Benefit of Wild Seaweeds in Hawai’i, Economic Botany, 10.1007/s12231-014-9258-7, 68 , 1, (30-43), (2014). Crossref
  • Zahid Manzoor, Vivek Bhakta Mathema, Doobyeong Chae, Eun-Sook Yoo, Hee-Kyoung Kang, Jin-Won Hyun, Nam Ho Lee, Mi-Hee Ko, Young-Sang Koh, Extracts of the seaweed Sargassum macrocarpum inhibit the CpG-induced inflammatory response by attenuating the NF-κB pathway, Food Science and Biotechnology, 10.1007/s10068-014-0041-4, 23 , 1, (293-297), (2013). Crossref
  • Jatinder Singh Sangha, Di Fan, Arjun H. Banskota, Roumiana Stefanova, Wajahatullah Khan, Jeff Hafting, James Craigie, Alan T. Critchley, Balakrishnan Prithiviraj, Bioactive components of the edible strain of red alga, Chondrus crispus, enhance oxidative stress tolerance in Caenorhabditis elegans, Journal of Functional Foods, 10.1016/j.jff.2013.04.001, 5 , 3, (1180-1190), (2013). Crossref
  • Areum Daseul Kim, Mei Jing Piao, Yu Jae Hyun, Hee Kyoung Kang, In Soo Suh, Nam Ho Lee, Jin Won Hyun, Photo-protective properties of Lomentaria hakodatensis yendo against ultraviolet B radiation-induced keratinocyte damage, Biotechnology and Bioprocess Engineering, 10.1007/s12257-012-0336-3, 17 , 6, (1223-1231), (2013). Crossref
  • Min‐Jung Seo, Hyeon‐Son Choi, Ok‐Hwan Lee, Boo‐Yong Lee, Grateloupia lanceolata (Okamura) Kawaguchi, the Edible Red Seaweed, Inhibits Lipid Accumulation and Reactive Oxygen Species Production During Differentiation in 3T3‐L1 Cells, Phytotherapy Research, 10.1002/ptr.4765, 27 , 5, (655-663), (2012). Wiley Online Library
  • Mi‐Seon Woo, Hyeon‐Son Choi, Ok‐Hwan Lee, Boo‐Yong Lee, The Edible red Alga, Gracilaria verrucosa, Inhibits Lipid Accumulation and ROS Production, but Improves Glucose Uptake in 3T3‐L1 Cells, Phytotherapy Research, 10.1002/ptr.4813, 27 , 7, (1102-1105), (2012). Wiley Online Library
  • Young-Jun Lee, Bo-Ra Yoon, Hyeon-Son Choi, Boo-Yong Lee, Ok-Hwan Lee, Effect of Sargassum micracanthum extract on Lipid Accumulation and Reactive Oxygen Species (ROS) Production during Differentiation of 3T3-L1 Preadipocytes, Korean Journal of Food Preservation, 10.11002/kjfp.2012.19.3.455, 19 , 3, (455-461), (2012). Crossref
  • Mei Piao, Yu Hyun, Suk Cho, Hee Kang, Eun Yoo, Young Koh, Nam Lee, Mi Ko, Jin Hyun, An Ethanol Extract Derived from Bonnemaisonia hamifera Scavenges Ultraviolet B (UVB) Radiation-Induced Reactive Oxygen Species and Attenuates UVB-Induced Cell Damage in Human Keratinocytes, Marine Drugs, 10.3390/md10122826, 10 , 12, (2826-2845), (2012). Crossref

Volume 47 , Issue 3 June 2011

Pages 548-556  相似文献   


17.
In the present study, we performed a differential proteomic analysis using 2-DE combined with MS to clarify the molecular mechanism for the suppressive effect of chitosan oligosaccharides (CO) during differentiation of adipocyte 3T3-L1. Cell differentiation was significantly inhibited by CO at the concentration of 4 mg/mL. Protein mapping of adipocyte homogenates by 2-DE revealed that numerous protein spots were differentially altered in response to CO treatment. Out of 50 identified proteins showing significant alterations, six were up-regulated and 44 were down-regulated by CO treatment in comparison to control mature adipocytes. Among them, most of the proteins are associated with lipid metabolism, cytoskeleton, and redox regulation, in which the levels of farnesyl diphosphate synthetase (FDS), dedicator of cytokinesis 9 (DOCK9), and chloride intracellular channel 1 (CLIC1) were significantly reduced (>two-fold) with CO treatment. These results have not previously been examined in the context of adipogenesis, and thus can be used as novel biomarkers. Taken together with immunoblot analysis, it was concluded that the inhibitory effect of CO on adipocyte differentiation was mediated by C/EBPalpha and PPARgamma pathway through significant downregulations of important adipogenic molecules such as fatty acid binding protein and glucose transporter 4.  相似文献   

18.
在研究胰岛素(Ins)、地塞米松(Dex)和甲基异丁基黄嘌呤(Mix)对脂肪细胞分化过程中PAI-1基因表达的影响基础上,为进一步探讨Ins、Dex调控PAI-1基因转录表达的调控机制,应用DNA重组技术,构建含萤光素酶(luciferase)报告基因和PAI-1启动子不同长度片段的嵌合质粒,转染3T3-L1前脂肪细胞并测定报告基因荧光素酶的活性.结果表明,小鼠PAI-1基因起动子-690至-850碱基序列之间有一个Dex的正调控元件.用计算机软件进行分析发现:Dex顺式元件位于PAI-1启动子的-750至-770碱基序列.其组成为:5′ GGTAACCTCTGTTCTCAT 3′.同时还发现在PAI-1启动子的-720至-740碱基序列中,存在一个C/EBPs的结合元件5′CCAAT3′并用凝胶电泳迁移实验对这些元件进行了鉴定.表明Dex正是通过激活转录因子(糖皮质激素受体,GR)和C/EBPα一起与各自的顺式元件结合来促进PAI-1基因的表达.  相似文献   

19.
20.
Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号