首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: To investigate the effect of a high‐energy (HE) diet on caloric intake, body weight, and related parameters in outbred male Sprague‐Dawley (SD) rats. Research Methods and Procedures: Twenty‐eight SD rats were fed either chow (C) for 19 weeks or HE diet for 14 weeks and then C for 5 weeks. Blood hormones and metabolites were assayed, and expression of uncoupling protein‐1 and hypothalamic energy‐balance‐related genes were determined by Northern blotting and in situ hybridization, respectively. Results: HE rats gained body weight more rapidly than C animals with a range of weight gains, but there was no evidence that weight gain was bimodally distributed. Caloric intake was transiently elevated after introduction of the HE diet. Transfer of HE rats back to C resulted in a drop in caloric intake, but a stable body weight. In terminal analysis, two of four dissected adipose tissue depots were heavier in rats that had previously been fed HE diet. Blood leptin, insulin, glucose, and nonesterified fatty acids were not different between the groups. Uncoupling protein‐1 mRNA was elevated in interscapular brown adipose tissue from HE rats. There was a trend for agouti‐related peptide mRNA in the hypothalamic arcuate nucleus to be higher in HE rats. Discussion: Contrary to other studies of the SD rat on HE diet, body weight and other measured parameters were normally distributed. There was no segregation into two distinct populations on the basis of susceptibility to diet‐induced obesity. This characteristic may be dependent on the breeding colony from which animals were sourced.  相似文献   

2.
Objective: To investigate whether catch‐up growth after maternal malnutrition would favor the development of obesity in adulthood. Research Methods and Procedures: Pregnant rats were submitted to protein or calorie restriction during the course of gestation. During lactation, pups were protein‐restricted, normally fed, or overfed [reduced litter size, control (C) diet]. At weaning, rats were transferred to chow or to a hypercaloric diet (HCD) known to induce obesity. Body weight, food intake, blood parameters, glucose tolerance, adipocyte cellularity, and adipose factors contributing to cardiovascular disease development were measured. Results: Protein and calorie restriction during gestation led to growth retardation at birth. If malnutrition was prolonged throughout lactation, adult body weight was permanently reduced. However, growth‐retarded offspring overfed during the suckling period underwent a rapid catch‐up growth and became heavier than the normally fed Cs. Offspring of calorie‐restricted rats gained more weight than those of dams fed protein‐restricted diet. Feeding an HCD postnatally amplified the effect of calorie restriction, and offspring that underwent catch‐up growth became more obese than Cs. The HCD was associated with hyperphagia, hyperglycemia, hyperinsulinemia, glucose intolerance, insulin resistance, and adipocyte hypertrophy. The magnitude of effects varied depending on the type and the timing of early malnutrition. The expression of genes encoding factors implicated in cardiovascular disease was also modulated differently by early malnutrition and adult obesity. Discussion: Catch‐up growth immediately after early malnutrition should be a key point for the programming of obesity.  相似文献   

3.
Obesity is a disease that has become a serious public health issue worldwide, and chronic stressors, which are a problem for modern society, cause neuroendocrine changes with alterations in food intake. Obesity and chronic stress are associated with the development of cardiovascular diseases and metabolic disorders. In this study, a rat model was used to evaluate the effects of a hypercaloric diet plus chronic restraint stress on the serum leptin and lipids levels and on the weight of specific adipose tissue (mesenteric, MAT; subcutaneous, SAT and visceral, VAT). Wistar rats were divided into the following 4 groups: standard chow (C), hypercaloric diet (HD), stress plus standard chow (S), and stress plus hypercaloric diet (SHD). The animals in the stress groups were subjected to chronic stress (placed inside a 25 cm × 7 cm plastic tube for 1 h per day, 5 days per week for 6 weeks). The following parameters were evaluated: the weight of the liver, adrenal glands and specific adipose tissue; the delta weight; the Lee index; and the serum levels of leptin, corticosterone, glucose, total cholesterol, and triglycerides. The hypercaloric diet induced obesity in rats, increasing the Lee index, weight, leptin, triglycerides, and cholesterol levels. The stress decreased weight gain even in animals fed a hypercaloric diet but did not prevent a significant increase in the Lee index. However, an interaction between the independent factors (hypercaloric diet and stress) was observed, which is demonstrated by the increased serum leptin levels in the animals exposed to both protocols.  相似文献   

4.
Objective: To characterize the dose‐response relationship between dietary fat to carbohydrate ratio and spontaneous caloric intake. Research Methods and Procedures: Male Long‐Evans rats consumed milk‐based liquid diets that differed in fat content (17% to 60% of kilocalories) but had equivalent protein content and energy density. In Experiment 1, rats consumed one of the diets (n = 9/diet group) as the sole source of nutrition for 16 days. In Experiment 2, diets were offered as an option to nutritionally complete chow for 4 days followed by a 3‐day chow‐only washout in a randomized within‐subjects design (n = 30). In Experiment 3, nine rats received isocaloric intragastric infusions of diet overnight, with chow available ad libitum. At least two no‐infusion days separated the different diet infusions, which were given in random order. Food intake was measured daily Results: Dietary fat dose dependently increased total daily kilocalories in each of the three paradigms. Discussion: These data imply that the postingestive effects of carbohydrate and fat differentially engage the physiological substrates that regulate daily caloric intake. These findings reiterate the importance of investigating macronutrient‐specific controls of feeding, rather than prematurely concluding that dietary attributes that covary with fat content (e.g., caloric density and palatability) drive the overeating associated with a high‐fat diet.  相似文献   

5.
Objective: To investigate stearoyl‐coenzyme A desaturase (SCD) 1 expression in obesity‐prone C57BL/6 mice and in obesity‐resistant FVB mice to explore the relationship of SCD1 expression and susceptibility to diet‐induced obesity. Research Methods and Procedures: Nine‐week‐old C57BL/6 and FVB mice were fed either a high‐ or low‐fat diet for 8 weeks. Body weight and body composition were measured before and at weeks 4 and 8 of the study. Energy expenditure was measured at weeks 1 and 5 of the study. Hepatic SCD1 mRNA was measured at 72 hours and at the end of study. Plasma leptin and insulin concentrations were measured at the end of study. Results: When C57BL/6 mice were switched to a calorie‐dense high‐fat diet, animals gained significantly more body weight than those maintained on a low‐calorie density diet primarily due to increased fat mass accretion. Fat mass continued to accrue throughout 8 weeks of study. Increased calorie intake did not account for all weight gain. On the high‐fat diet, C57BL/6 mice decreased their energy expenditure when compared with mice fed a low‐fat diet. In response to 8 weeks of a high‐fat diet, SCD1 gene expression in liver increased >2‐fold. In contrast, feeding a high‐fat diet did not change body weight, energy expenditure, or SCD1 expression in FVB mice. Discussion: Our study showed that a high‐fat hypercaloric diet increased body adiposity first by producing hyperphagia and then by decreasing energy expenditure of mice susceptible to diet‐induced obesity. Consumption of a high‐fat diet in species predisposed to obesity selectively increased SCD1 gene expression in liver.  相似文献   

6.
Objective: To model how consuming a low‐carbohydrate (LC) diet influences food intake and body weight. Research Methods and Procedures: Food intake and body weight were monitored in rats with access to chow (CH), LC‐high‐fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan‐II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin‐4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC‐HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. Results: HF rats consumed more food and gained more weight than rats on CH or LC‐HF diets. Despite similar intakes and weight gains, LC‐HF rats had increased adiposity relative to CH rats. LC‐HF rats were more sensitive to melanotan‐II and less sensitive to SHU9119. LC‐HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food‐deprived rats. LC‐HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Discussion: Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC‐HF diet affects food intake by reducing compensatory responses to food deprivation.  相似文献   

7.
Leptin-resistant rats, when given a high-fat (HF) diet, have a delayed normalization of caloric intake and greater weight gain than those on a chow diet. Because aged, obese rats are leptin resistant, these data predict that they will also have a delayed normalization of caloric intake and exacerbated weight gain when provided a HF diet. To investigate this hypothesis, along with the consequences of a HF diet on voluntary wheel running, we compared various ages of rats on a HF or chow diet. HF-fed young rats spontaneously divided into diet-induced obese and diet-resistant rats. However, all aged rats were susceptible to the weight-gaining effects of HF feeding. Rate of initial weight gain was proportional to age, and peak caloric intake on the HF diet and the days required to normalize caloric intake to basal levels increased with age. Responsiveness to peripheral leptin before HF feeding revealed a dose-response decrease in food intake and body weight in the young but no responses in the aged to even the highest dose, 0.5 mg/day. In addition, both age and HF feeding decreased the tendency for wheel running, suggesting the propensity for inactivity with age and HF feeding may contribute to age-related obesity and accelerate the rate of diet-induced obesity. These results demonstrate that aged rats are more susceptible to the detrimental effects of a HF diet.  相似文献   

8.
9.
Objective: To characterize the meal patterns of free feeding Sprague‐Dawley rats that become obese or resist obesity when chronically fed a high‐fat diet. Research Methods and Procedures: Male Sprague‐Dawley rats (N = 120) were weaned onto a high‐fat diet, and body weight was monitored for 19 weeks. Rats from the upper [diet‐induced obese (DIO)] and lower [diet‐resistant (DR)] deciles for body‐weight gain were selected for study. A cohort of chow‐fed (CF) rats weight‐matched to the DR group was also studied. Food intake was continuously monitored for 7 consecutive days using a BioDAQ food intake monitoring system. Results: DIO rats were obese, hyperphagic, hyperleptinemic, hyperinsulinemic, hyperglycemic, and hypertriglyceridemic relative to the DR and CF rats. The hyperphagia of DIOs was caused by an increase in meal size, not number. CF rats ate more calories than DR rats; however, this was because of an increase in meal number, not size. When expressed as a function of lean mass, CF and DR rats consumed the same amount of calories. The intermeal intervals of DIO and DR rats were similar; both were longer than CF rats. The nocturnal satiety ratio of DIO rats was significantly lower than DR and CF rats. The proportion of calories eaten during the nocturnal period did not differ among groups. Discussion: The hyperphagia of a Sprague‐Dawley rat model of chronic diet‐induced obesity is caused by an increase in meal size, not number. These results are an important step toward understanding the mechanisms underlying differences in feeding behavior of DIO and DR rats.  相似文献   

10.
Objective: The effects of a very low‐carbohydrate (VLC), high‐fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high‐carbohydrate (HC), low‐fat (LF) regimen in dietary obese rats. Research Methods and Procedures: Male Sprague‐Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post‐load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC‐HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one‐half (HC) were pair‐fed an HC‐LF diet (Weeks 9 to 14 at 60% carbohydrate). Results: Energy intakes of pair‐fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. Discussion: When energy intake was matched, the VLC‐HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC‐LF diet.  相似文献   

11.
Objective: The goal of this study was to determine whether differential induction of skeletal muscle uncoupling protein 3 (UCP3) contributes to the development of diet‐induced obesity (DIO) or resistance to the development of obesity (DR) when rats are placed on a moderate fat (31%) high energy (HE) diet. Research Methods and Procedures: Gastrocnemius muscle was obtained from Sprague‐Dawley rats that were identified as DIO‐prone (n = 5) or DR (n = 5) on the basis of urinary norepinephrine excretion while consuming a chow diet. Muscle was also obtained from animals in the top tertile of weight gain (DIOHE, n = 5) and the bottom tertile of weight gain (DRHE, n = 5) after 2 weeks on the HE diet. UCP3 and actin mRNA levels were measured in all muscle samples by Northern analysis. To distinguish the effect of dietary energy content from the effect of obesity itself, we studied additional DIO and DR animals that had been returned to a chow diet for 10 weeks after consuming a HE diet for 10 weeks. Results: The muscle UCP3/actin mRNA ratio in animals that resisted the development of obesity during 2 weeks on the HE diet was 3‐fold higher than in the other groups (DRHE = 3.24 ± 0.83, DIOHE = 0.91 ± 0.20, DIO‐prone = 0.72 ± 0.15, DR = 0.63 ± 0.15; p = 0.002). However, there was no difference in muscle UCP3/actin mRNA ratios between DIO animals and DR animals that had been fed the HE diet for 10 weeks and then returned to either an ad libitum chow diet for 10 weeks (DIO = 13.8 ± 3.53, DR = 11.1 ± 3.43, p = NS) or to a restricted chow diet for 10 weeks (DIO = 11.0 ± 2.85, DR = 10.6 ± 2.20, p = NS) despite significantly greater body weight of the DIO animals. Discussion: DR animals may initially resist weight gain when placed on a HE diet through a greater induction of muscle UCP3. This induction is transient and is related more closely to dietary fat content than to body fat stores. DIO animals show no initial induction of muscle UCP3, which may contribute to their increased metabolic efficiency soon after exposure to a HE diet.  相似文献   

12.
F344/DuCrj rats are genetically deficient in dipeptidyl peptidase IV (DPPIV). This enzyme degrades glucagon-like peptide-1 (GLP-1), which induces glucose-dependent insulin secretion. Glucose tolerance of F344/DuCrj rats is improved as a result of enhanced insulin release induced by high levels of plasma GLP-1. In this study, we fed F344/DuCrj rats and DPPIV-positive F344/Jcl rats, aged five weeks, on a high-fat (HF) diet to examine the effect of DPPIV deficiency on food intake and insulin resistance. F344/Jcl rats gained significantly more body weight and consumed significantly more food than F344/DuCrj rats from Week 4 on either control or HF diet. Glucose excursion in the oral glucose tolerance test (OGTT) was improved in F344/DuCrj rats fed on the control or HF diet at all times examined, compared with F344/Jcl rats. Homeostasis model assessment (HOMA) insulin resistance values of F344/DuCrj and F344/Jcl rats fed on HF diet were higher than those of animals fed on control diet up to Week 6. However, HOMA insulin resistance values of F344/DuCrj rats fed on HF diet became significantly lower than those of F344/Jcl rats on HF diet during Weeks 8-10. The area under the insulin curve in the OGTT at Week 10 showed that the insulin resistance of HF-diet-fed F344/DuCrj rats was greatly ameliorated. Plasma active GLP-1 concentrations of F344/DuCrj rats in the fed state were significantly higher than those of F344/Jcl rats. These observations suggest that DPPIV deficiency results in improved glucose tolerance and ameliorated insulin resistance owing to enhanced insulin release and inhibition of food intake as a result of high active GLP-1 levels.  相似文献   

13.
Administration of CNTF durably reduces food intake and body weight in obese humans and rodent models. However, the involvement of endogenous CNTF in the central regulation of energy homeostasis needs to be elucidated. Here, we demonstrate that CNTF and its receptor are expressed in the arcuate nucleus, a key hypothalamic region controlling food intake, and that CNTF levels are inversely correlated to body weight in rats fed a high-sucrose diet. Thus endogenous CNTF may act, in some individuals, as a protective factor against weight gain during hypercaloric diet and could account for individual differences in the susceptibility to obesity.  相似文献   

14.
Objective: We used a rodent model of dietary obesity to evaluate effects of caloric restriction‐induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel‐groups design, 312 outbred Sprague‐Dawley rats (one‐half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)‐fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one‐third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF‐AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Results: Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Discussion: Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.  相似文献   

15.
Objective: Reduced intake of sweetened caloric beverages (SCBs) is recommended to lower total energy intake. Replacing SCBs with non‐caloric diet beverages does not automatically lower energy intake, however. Compensatory increases in other food or beverages reportedly negate benefits of diet beverages. The purpose of this study was to evaluate drinking water as an alternative to SCBs. Research Methods and Procedures: Secondary analysis of data from the Stanford A TO Z intervention evaluated change in beverage pattern and total energy intake in 118 overweight women (25 to 50 years) who regularly consumed SCBs (>12 ounces/d) at baseline. At baseline and 2, 6, and 12 months, mean daily beverage intake (SCBs, drinking water, non‐caloric diet beverages, and nutritious caloric beverages), food composition (macronutrient, water, and fiber content), and total energy intake were estimated using three 24‐hour diet recalls. Beverage intake was expressed in relative terms (percentage of beverages). Results: In fixed effects models that controlled for total beverage intake, non‐caloric and nutritious caloric beverage intake (percentage of beverages), food composition, and energy expenditure [metabolic equivalent (MET)], replacing SCBs with drinking water was associated with significant decreases in total energy intake that were sustained over time. The caloric deficit attributable to replacing SCBs with water was not negated by compensatory increases in other food or beverages. Replacing all SCBs with drinking water was associated with a predicted mean decrease in total energy of 200 kcal/d over 12 months. Discussion: The results suggest that replacing SCBs with drinking water can help lower total energy intake in overweight consumers of SCBs motivated to diet.  相似文献   

16.
We previously created a novel F-DIO rat strain derived by crossing rats selectively bred for the diet-induced obesity (DIO) phenotype with obesity-resistant Fischer F344 rats. The offspring retained the DIO phenotype through 3 backcrosses with F344 rats but also had exaggerated insulin responses to oral glucose before they became obese on a 31% fat high-energy (HE) diet. Here, we demonstrate that chow-fed rats from the subsequent randomly bred progeny required 57% lower glucose infusions to maintain euglycemia during a hyperinsulinemic clamp in association with 45% less insulin-induced hepatic glucose output inhibition and 80% lower insulin-induced glucose uptake than F344 rats. The DIO phenotype and exaggerated insulin response to oral glucose in the nonobese, chow-fed state persisted in the F6 generation. Also, compared with F344 rats, chow-fed F-DIO rats had 68% higher arcuate nucleus proopiomelanocortin mRNA expression which, unlike the increase in F344 rats, was decreased by 26% on HE diet. Further, F-DIO lateral hypothalamic orexin expression was 18% lower than in F344 rats and was increased rather than decreased by HE diet intake. Finally, both maternal obesity and 30% caloric restriction during the third week of gestation produced F-DIO offspring which were heavier and had higher leptin and insulin levels than lean F-DIO dam offspring. Third-gestational week dexamethasone also produced offspring with higher leptin and insulin levels but with lower body weight. Thus F-DIO rats represent a novel and potentially useful model for the study of DIO, insulin resistance, and perinatal factors that influence the development and persistence of obesity.  相似文献   

17.
Objective: Obese transgenic UCP‐DTA mice have largely ablated brown adipose tissue and develop obesity and diabetes, which are highly susceptible to a high‐fat diet. We investigated macronutrient self‐selection and its effect on development of obesity, diabetes, and energy homeostasis in UCP‐DTA mice. Research Methods and Procedures: UCP‐DTA and wild‐type littermates were fed a semisynthetic macronutrient choice diet (CD) ad libitum from weaning until 17 weeks. Energy homeostasis was assessed by measurement of food intake, food digestibility, body composition, and energy expenditure. Diabetes was assessed by blood glucose measurements and insulin tolerance test. Results: Wild‐type and UCP‐DTA mice showed a high fat preference and increased energy digestion on CD compared with a low‐fat standard diet. On CD, wild‐type mice accumulated less body fat (16.9%) than UCP‐DTA (32.6%) mice, although they had a higher overall energy intake. Compared with wild‐type mice, resting metabolic rate was reduced in UCP‐DTA mice irrespective of diet. UCP‐DTA mice progressively decreased their carbohydrate intake, resulting in an almost complete avoidance of carbohydrate. UCP‐DTA mice developed severe insulin resistance but showed decreased fed and fasted blood glucose on CD. Discussion: In contrast to wild‐type mice, UCP‐DTA mice were not able to reduce their weight gain efficiency on CD. This suggests that, because of the high fat preference of the background strain and the increased metabolic efficiency, brown adipose tissue‐deficient mice still develop obesity and insulin resistance on a macronutrient CD even when decreasing overall energy intake. Through the avoidance of carbohydrates, however, they are able to maintain normoglycemia.  相似文献   

18.
Caloric intake is increased in rats fed a diet containing greater fat or sugar than that found in laboratory chow. Because such diet-induced hyperphagia has been studied primarily in sedentary male rats, our goal here was to investigate the effects of sex and exercise on caloric intake of a diet (chow supplemented with sweet milk) chosen for its ability to stimulate hyperphagia. Rats were housed individually in cages that provided access to running wheels, and daily caloric intake of chow alone and then chow plus sweet milk was monitored during sedentary and active conditions. In sedentary rats, chow intake was greater in males compared with females. Wheel running produced similar decreases in chow intake in both sexes. Availability of the chow plus milk diet increased caloric intake compared with that observed in chow-fed rats. This diet-induced hyperphagia was significantly greater in sedentary females (35.7 +/- 3.1% increase) relative to sedentary males (9.1 +/- 2.2% increase). In addition, 35% of sedentary females consuming the chow plus milk diet developed estrous cycle disruptions. Wheel running decreased intake of the chow plus milk diet in both sexes. In active males, diet-induced hyperphagia was abolished; caloric intake was reduced to that observed during chow feeding. In active female rats, diet-induced hyperphagia was attenuated but not abolished; caloric intake of the chow plus milk diet remained greater than that observed during chow feeding. We conclude that female rats are more vulnerable than male rats to this form of diet-induced hyperphagia.  相似文献   

19.
Objective: Childhood obesity is a prominent health problem that may involve early learning about tastes and the energy content of foods. We tested the hypothesis that food tastes predictive of low energy content cause overeating in young animals. Research Methods and Procedures: Juvenile and adolescent (4‐ and 8‐week‐old) male JCR:LA‐cp lean (+/cp or +/+) and obesity‐prone (cp/cp) rats were given sweet (saccharin) and salty (sodium chloride) gelatin cubes made with starch (high caloric) or no starch (low caloric) for 16 days of taste conditioning. After 10 hours of food deprivation, rats received pre‐meals with flavors that had been paired or unpaired with high caloric content during taste conditioning, followed immediately by measurement of chow intake at regular meals. Results: Our findings show that both lean (+/cp) and obesity‐prone (cp/cp) juvenile rats ate more regular chow after a pre‐meal with a flavor associated with low caloric value than after a similar pre‐meal with a flavor predictive of high caloric content. This effect occurred with juvenile rats but not with adolescents. Discussion: Data from our study indicate that the subversion of the relationship between taste and caloric content disrupts the normal physiological and behavioral energy balance of juvenile rats, resulting in overeating that is independent of genetic disposition for obesity.  相似文献   

20.
Objective: Childhood obesity is an emerging health problem. This study assesses the effects of three levels of dietary fat (10%, 32%, and 45% measured by kilocalories) on weight gain, body composition, energy metabolism, and comorbidity factors in rats from weaning through maturation. Research Methods and Procedures: The role of dietary fat on the susceptibility to obesity was assessed by feeding diets containing three levels of dietary fat to rats from weaning through 7 months of age. Body composition was analyzed by DXA after 6 and 12 weeks of dietary treatment. Energy metabolism was measured by indirect calorimetry. Results: Energy intake, weight gain, fat mass, and plasma glucose, cholesterol, triglyceride, free fatty acid, leptin, and insulin levels increased dose‐dependently with increased dietary fat. No difference in absolute lean mass among the three groups was observed. Therefore, the differences in weight gain are accounted for primarily by increased fat accretion. Compared with rats that were relatively resistant to obesity when on a 45% fat diet, diet‐induced obesity‐prone rats were in positive energy balance and had an elevated respiratory quotient, indicating a switch in energy substrate use from fat to carbohydrate, which promotes body‐fat accretion. Discussion: Our data support the hypothesis that administration of increasing amount of dietary fat to very young rats enhances susceptibility to diet‐induced obesity and its comorbidities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号