首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: Obese transgenic UCP‐DTA mice have largely ablated brown adipose tissue and develop obesity and diabetes, which are highly susceptible to a high‐fat diet. We investigated macronutrient self‐selection and its effect on development of obesity, diabetes, and energy homeostasis in UCP‐DTA mice. Research Methods and Procedures: UCP‐DTA and wild‐type littermates were fed a semisynthetic macronutrient choice diet (CD) ad libitum from weaning until 17 weeks. Energy homeostasis was assessed by measurement of food intake, food digestibility, body composition, and energy expenditure. Diabetes was assessed by blood glucose measurements and insulin tolerance test. Results: Wild‐type and UCP‐DTA mice showed a high fat preference and increased energy digestion on CD compared with a low‐fat standard diet. On CD, wild‐type mice accumulated less body fat (16.9%) than UCP‐DTA (32.6%) mice, although they had a higher overall energy intake. Compared with wild‐type mice, resting metabolic rate was reduced in UCP‐DTA mice irrespective of diet. UCP‐DTA mice progressively decreased their carbohydrate intake, resulting in an almost complete avoidance of carbohydrate. UCP‐DTA mice developed severe insulin resistance but showed decreased fed and fasted blood glucose on CD. Discussion: In contrast to wild‐type mice, UCP‐DTA mice were not able to reduce their weight gain efficiency on CD. This suggests that, because of the high fat preference of the background strain and the increased metabolic efficiency, brown adipose tissue‐deficient mice still develop obesity and insulin resistance on a macronutrient CD even when decreasing overall energy intake. Through the avoidance of carbohydrates, however, they are able to maintain normoglycemia.  相似文献   

2.
Objective: To investigate stearoyl‐coenzyme A desaturase (SCD) 1 expression in obesity‐prone C57BL/6 mice and in obesity‐resistant FVB mice to explore the relationship of SCD1 expression and susceptibility to diet‐induced obesity. Research Methods and Procedures: Nine‐week‐old C57BL/6 and FVB mice were fed either a high‐ or low‐fat diet for 8 weeks. Body weight and body composition were measured before and at weeks 4 and 8 of the study. Energy expenditure was measured at weeks 1 and 5 of the study. Hepatic SCD1 mRNA was measured at 72 hours and at the end of study. Plasma leptin and insulin concentrations were measured at the end of study. Results: When C57BL/6 mice were switched to a calorie‐dense high‐fat diet, animals gained significantly more body weight than those maintained on a low‐calorie density diet primarily due to increased fat mass accretion. Fat mass continued to accrue throughout 8 weeks of study. Increased calorie intake did not account for all weight gain. On the high‐fat diet, C57BL/6 mice decreased their energy expenditure when compared with mice fed a low‐fat diet. In response to 8 weeks of a high‐fat diet, SCD1 gene expression in liver increased >2‐fold. In contrast, feeding a high‐fat diet did not change body weight, energy expenditure, or SCD1 expression in FVB mice. Discussion: Our study showed that a high‐fat hypercaloric diet increased body adiposity first by producing hyperphagia and then by decreasing energy expenditure of mice susceptible to diet‐induced obesity. Consumption of a high‐fat diet in species predisposed to obesity selectively increased SCD1 gene expression in liver.  相似文献   

3.
Objective: The objectives of this study were to compare the effects of diets rich in medium‐chain triglycerides (MCTs) or long‐chain triglycerides (LCTs) on body composition, energy expenditure, substrate oxidation, subjective appetite, and ad libitum energy intake in overweight men. Research Methods and Procedures: Twenty‐four healthy, overweight men with body mass indexes between 25 and 31 kg/m2 consumed diets rich in MCT or LCT for 28 days each in a crossover randomized controlled trial. At baseline and after 4 weeks of each dietary intervention, energy expenditure was measured using indirect calorimetry, and body composition was analyzed using magnetic resonance imaging. Results: Upper body adipose tissue (AT) decreased to a greater extent (p < 0.05) with functional oil (FctO) compared with olive oil (OL) consumption (?0.67 ± 0.26 kg and ?0.02 ± 0.19 kg, respectively). There was a trend toward greater loss of whole‐body subcutaneous AT volume (p = 0.087) with FctO compared with OL consumption. Average energy expenditure was 0.04 ± 0.02 kcal/min greater (p < 0.05) on day 2 and 0.03 ± 0.02 kcal/min (not significant) on day 28 with FctO compared with OL consumption. Similarly, average fat oxidation was greater (p = 0.052) with FctO compared with OL intake on day 2 but not day 28. Discussion: Consumption of a diet rich in MCTs results in greater loss of AT compared with LCTs, perhaps due to increased energy expenditure and fat oxidation observed with MCT intake. Thus, MCTs may be considered as agents that aid in the prevention of obesity or potentially stimulate weight loss.  相似文献   

4.

Background

End-stage renal disease rates rose following widespread introduction of high fructose corn syrup in the American diet, supporting speculation that fructose harms the kidney. Sugar-sweetened soda is a primary source of fructose. We therefore hypothesized that sugary soda consumption was associated with albuminuria, a sensitive marker for kidney disease.

Methodology/Principal Findings

Design was a cross-sectional analysis. Data were drawn from the National Health and Nutrition Examination Survey (NHANES), 1999–2004. The setting was a representative United States population sample. Participants included adults 20 years and older with no history of diabetes mellitus (n = 12,601); after exclusions for missing outcome and covariate information (n = 3,243), the analysis dataset consisted of 9,358 subjects. Exposure was consumption of two or more sugary soft drinks, based on 24-hour dietary recall. The main outcome measure was Albuminuria, defined by albumin to creatinine ratio cutpoints of >17 mg/g (males) and >25 mg/g (females). Logistic regression adjusted for confounders (diet soda, age, race-ethnicity, gender, poverty). Interactions between age, race-ethnicity, gender, and overweight-obesity were explored. Further analysis adjusted for potential mediators: energy intake, basal metabolic rate, obesity, hypertension, lipids, serum uric acid, smoking, energy expenditure, and glycohemoglobin. Alternative soda intake definitions and cola consumption were employed.

Results

Weighted albuminuria prevalence was 11%, and 17% consumed 2+ sugary soft drinks/day. The confounder-adjusted odds ratio for sugary soda was 1.40 (95% confidence interval: 1.13, 1.74). Associations were modified by gender (p = 0.008) and overweight-obesity (p = 0.014). Among women, the OR was 1.86 (95% CI: 1.37, 2.53); the OR among males was not significant. In the group with body mass under 25 kg/m2, OR = 2.15 (95% confidence interval: 1.42, 3.25). Adjustment for potential mediators and use of alternative definitions of albuminuria and soda consumption did not appreciably change results. Diet sodas were not associated with albuminuria.

Conclusions

Findings suggest that sugary soda consumption may be associated with kidney damage, although moderate consumption of 1 or fewer sodas does not appear to be harmful. Additional studies are needed to assess whether HFCS itself, overall excess intake of sugar, or unmeasured lifestyle and confounding factors are responsible.  相似文献   

5.
Transgenic mice overexpressing chicken Ski (c‐Ski) have marked decrease in adipose mass with skeletal muscle hypertrophy. Recent evidence indicates a role for c‐Ski in lipogenesis and energy expenditure. In the present study, wild type (WT) and c‐Ski mice were challenged on a high‐fat (HF) diet to determine whether c‐Ski mice were resistant to diet‐induced obesity. During the HF feeding WT mice gained significantly more weight than chow‐fed animals, while c‐Ski mice were partially resistant to the effects of the HF diet on weight. Body composition analysis confirmed the decreased adipose mass in c‐Ski mice compared to WT mice. c‐Ski mice possess a similar metabolic rate and level of food consumption to WT littermates, despite lower activity levels and on chow diet show mild glucose intolerance relative to WT littermates. On HF diet, glucose tolerance surprisingly remained unchanged in c‐Ski mice, while it became worse in WT mice. Skeletal muscle of c‐Ski mice exhibit impaired insulin‐stimulated Akt phosphorylation and glucose uptake. In concordance, gene expression profiling of skeletal muscle of chow and HF‐fed mice indicated that Ski suppresses gene expression associated with insulin signaling and glucose uptake and alters gene pathways involved in myogenesis and adipogenesis. In conclusion, c‐Ski mice are partially resistant to diet‐induced obesity and display aberrant insulin signaling and glucose homeostasis which is associated with alterations in gene expression that inhibit lipogenesis and insulin signaling. These results suggest Ski plays a major role in skeletal muscle metabolism and adipogenesis and hence influences risk of obesity and diabetes.  相似文献   

6.
Objective: The objective of the study was to determine if consumption of conjugated linoleic acid (CLA) by mice could induce apoptosis in adipose tissue. Other objectives were to determine the influence of feeding mice CLA for ≤2 weeks on body fat, energy expenditure, and feed intake. Research Methods and Procedures: A mixture of CLA isomers (predominantly c9,t11 and t10,c12) was included in the AIN‐93G diet at 0, 1, and 2%, and fed to mice for 12 days (Trial 1), or was included at 2% and fed to mice for 0, 5, and 14 days (Trial 2). Feed intake was measured daily and energy expenditure was determined by direct calorimetry on day 9 in Trial 1. Retroperitoneal fat pads were analyzed for apoptosis by determination of DNA fragmentation. Results: Dietary CLA reduced feed intake by 10% to 12% (p < 0.01), but either did not influence or did not increase energy expenditure as indicated by heat loss. Body weight was not influenced by consumption of CLA in Trial 1 but was increased (p < 0.01) by CLA in Trial 2. Weights of retroperitoneal, epididymal, and brown adipose tissues were lower (p < 0.01) in animals fed CLA, although liver weight was increased (p < 0.10; Trial 1) or not changed (Trial 2). Analysis of retroperitoneal fat pad DNA from both trials indicated that apoptosis was increased (p < 0.01) by CLA consumption. Discussion: These results are interpreted to indicate that CLA consumption causes apoptosis in white adipose tissue. This effect occurs within 5 days of consuming a diet that contains CLA.  相似文献   

7.
Background/objectivesLiquid fructose associates with prevalence of type 2 diabetes mellitus and obesity. Intervention studies suggest that metabolically unfit individuals are more responsive than healthy individuals to liquid fructose. We determined whether mice consuming an obesogenic Western diet were more responsive than chow-fed mice to the alterations induced by liquid fructose supplementation (LFS).MethodsC57BL/6N mice were fed chow or Western diet±ad libitum 15% fructose solution for 12 weeks. Food and liquid intake and body weight were monitored. Plasma analytes and liver lipids, histology and the expression of genes related to lipid handling, endoplasmic reticulum stress, inflammation and insulin signaling were analyzed.ResultsWestern diet increased energy intake, visceral adipose tissue (vWAT), body weight, plasma and liver triglycerides and cholesterol, and inflammatory markers in vWAT vs. chow-fed mice. LFS did not change energy intake, vWAT or body weight. LFS significantly increased plasma and liver triglycerides and cholesterol levels only in Western-diet-fed mice. These changes associated with a potentiation of the increased liver expression of PPARγ and CD36 that was observed in Western-fed mice and related to the increased liver mTOR phosphorylation induced by LFS. Furthermore, LFS in Western-diet-fed mice induced the largest reduction in liver IRS2 protein and a significant decrease in whole-body insulin sensitivity.ConclusionsLFS in mice, in a background of an unhealthy diet that already induces fatty liver visceral fat accretion and obesity, increases liver lipid burden, hinders hepatic insulin signaling and diminishes whole-body insulin sensitivity without changing energy intake.  相似文献   

8.
Objective: Restriction of energy intake produces weight loss, but the rate of loss is seldom sustained. This is presumed to be a consequence of compensatory reductions in energy expenditure, although the exact contributions of different components to the energy budget remain uncertain. We examined the compensatory responses of mice to a 20% dietary restriction. Research Methods and Procedures: We measured body mass, body fatness, body temperature, and the components of daily energy expenditure for 50 MF1 mice. Forty mice were then placed on a restricted diet at 80% of their ad libitum intake for 50 days. The remaining 10 mice continued to feed ad libitum. Ten days before the end of the restriction period, the same measurements were taken. Results: There were no significant differences between the control and restricted groups in any parameters before restriction. During the restriction period, body mass increased in both the control and restricted groups, but at a slower rate in the restricted mice. The control group increased in both fat and fat free mass; however, although the restricted group increased fat to the same extent as the controls, fat free mass increased to a lesser extent. The contributions of the different components of the expended energy to compensate for the reduced energy intake were energy deposition, 2.2%; resting metabolic rate, 22.3%; and activity, 75.5%. Discussion: Mice were able to compensate almost completely for the restricted energy intake that was achieved by altering the amount of energy required for each component of the energy budget except digestive efficiency.  相似文献   

9.
Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain.  相似文献   

10.
Background: Increased intake of sugar‐sweetened beverages and fruit juice has been associated with overweight in children. Objective: This study prospectively assessed beverage consumption patterns and their relationship with weight status in a cohort of children born at different risk for obesity. Methods and Procedures: Participants were children born at low risk (n = 27) or high risk (n = 22) for obesity based on maternal prepregnancy BMI (kg/m2). Daily beverage consumption was generated from 3‐day food records from children aged 3–6 years and coded into seven beverage categories (milk, fruit juice, fruit drinks, caloric and noncaloric soda, soft drinks including and excluding fruit juice). Child anthropometric measures were assessed yearly. Results: High‐risk children consumed a greater percentage of daily calories from beverages at age 3, more fruit juice at ages 3 and 4, more soft drinks (including fruit juice) at ages 3–5, and more soda at age 6 compared to low‐risk children. Longitudinal analyses showed that a greater 3‐year increase in soda intake was associated with an increased change in waist circumference, whereas a greater increase in milk intake was associated with a reduced change in waist circumference. There was no significant association between change in intake from any of the beverage categories and change in BMI z‐score across analyses. Discussion: Children's familial predisposition to obesity may differentially affect their beverage consumption patterns. Future research should examine the extent to which dietary factors may play a role in pediatric body fat deposition over time.  相似文献   

11.
Objective: Childhood obesity is an emerging health problem. This study assesses the effects of three levels of dietary fat (10%, 32%, and 45% measured by kilocalories) on weight gain, body composition, energy metabolism, and comorbidity factors in rats from weaning through maturation. Research Methods and Procedures: The role of dietary fat on the susceptibility to obesity was assessed by feeding diets containing three levels of dietary fat to rats from weaning through 7 months of age. Body composition was analyzed by DXA after 6 and 12 weeks of dietary treatment. Energy metabolism was measured by indirect calorimetry. Results: Energy intake, weight gain, fat mass, and plasma glucose, cholesterol, triglyceride, free fatty acid, leptin, and insulin levels increased dose‐dependently with increased dietary fat. No difference in absolute lean mass among the three groups was observed. Therefore, the differences in weight gain are accounted for primarily by increased fat accretion. Compared with rats that were relatively resistant to obesity when on a 45% fat diet, diet‐induced obesity‐prone rats were in positive energy balance and had an elevated respiratory quotient, indicating a switch in energy substrate use from fat to carbohydrate, which promotes body‐fat accretion. Discussion: Our data support the hypothesis that administration of increasing amount of dietary fat to very young rats enhances susceptibility to diet‐induced obesity and its comorbidities.  相似文献   

12.
Overconsumption of fructose, particularly in the form of soft drinks, is increasingly recognized as a public health concern. The acute cardiovascular responses to ingesting fructose have not, however, been well-studied in humans. In this randomized crossover study, we compared cardiovascular autonomic regulation after ingesting water and drinks containing either glucose or fructose in 15 healthy volunteers (aged 21-33 yr). The total volume of each drink was 500 ml, and the sugar content 60 g. For 30 min before and 2 h after each drink, we recorded beat-to-beat heart rate, arterial blood pressure, and cardiac output. Energy expenditure was determined on a minute-by-minute basis. Ingesting the fructose drink significantly increased blood pressure, heart rate, and cardiac output but not total peripheral resistance. Glucose ingestion resulted in a significantly greater increase in cardiac output than fructose but no change in blood pressure and a concomitant decrease in total peripheral resistance. Ingesting glucose and fructose, but not water, significantly increased blood pressure variability and decreased cardiovagal baroreflex sensitivity. Energy expenditure increased by a similar amount after glucose and fructose ingestion, but fructose elicited a significantly greater increase in respiratory quotient. These results show that ingestion of glucose and fructose drinks is characterized by specific hemodynamic responses. In particular, fructose ingestion elicits an increase in blood pressure that is probably mediated by an increase in cardiac output without compensatory peripheral vasodilatation.  相似文献   

13.
The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.  相似文献   

14.
15.
Objective To examine the relation between intake of sugar sweetened soft drinks and fructose and the risk of incident gout in men.Design Prospective cohort over 12 years.Setting Health professionals follow-up study.Participants 46 393 men with no history of gout at baseline who provided information on intake of soft drinks and fructose through validated food frequency questionnaires.Main outcome measure Incident cases of gout meeting the American College of Rheumatology survey criteria for gout.Results During the 12 years of follow-up 755 confirmed incident cases of gout were reported. Increasing intake of sugar sweetened soft drinks was associated with an increasing risk of gout. Compared with consumption of less than one serving of sugar sweetened soft drinks a month the multivariate relative risk of gout for 5-6 servings a week was 1.29 (95% confidence interval 1.00 to 1.68), for one serving a day was 1.45 (1.02 to 2.08), and for two or more servings a day was 1.85 (1.08 to 3.16; P for trend=0.002). Diet soft drinks were not associated with risk of gout (P for trend=0.99). The multivariate relative risk of gout according to increasing fifths of fructose intake were 1.00, 1.29, 1.41, 1.84, and 2.02 (1.49 to 2.75; P for trend <0.001). Other major contributors to fructose intake such as total fruit juice or fructose rich fruits (apples and oranges) were also associated with a higher risk of gout (P values for trend <0.05).Conclusions Prospective data suggest that consumption of sugar sweetened soft drinks and fructose is strongly associated with an increased risk of gout in men. Furthermore, fructose rich fruits and fruit juices may also increase the risk. Diet soft drinks were not associated with the risk of gout.  相似文献   

16.
Stimulation of the ghrelin receptor (GhrR) by ghrelin results in a variety of metabolic changes including increased food intake, fat storage and insulin resistance. Loss of ghrelin signaling is protective against diet-induced obesity, suggesting that ghrelin plays a significant homeostatic role in conditions of metabolic stress. We examined glycemic control in GhrR −/− mice fed a high-fat diet, and used indirect calorimetry to assess fuel substrate usage and energy expenditure. GhrR −/− mice fed a high-fat diet had several measures of greater insulin sensitivity, including: lower fasted blood glucose and plasma insulin, lower %HbA1c, lower insulin levels during glucose tolerance tests, and improved performance in hyperinsulinemic-euglycemic and hyperglycemic clamp studies. GhrR −/− mice fed a high-fat diet did not develop hepatic steatosis and had lower total cholesterol, relative to controls. Furthermore, GhrR −/− mice demonstrated a lower intestinal triglyceride secretion rate of dietary lipid. GhrR −/− mice have higher respiratory quotients (RQ), indicating a preference for carbohydrate as fuel. The range of RQ values was wider in GhrR −/− mice, indicating greater metabolic flexibility and insulin sensitivity in these animals. We therefore propose that loss of ghrelin signaling promotes insulin sensitivity and metabolic flexibility, and protects against several fatty diet-induced features of metabolic syndrome due to convergent changes in the intake, absorption and utilization of energy.  相似文献   

17.
目的:高热量物质的过度摄入是导致机体代谢紊乱,诱发2型糖尿病等代谢性疾病的主要原因,本文通过比较高果糖、高脂及高果糖高脂混合喂饲对小鼠体内能量代谢的影响,探索饮食诱发代谢紊乱性疾病的可能发病机制。方法:采用20%高果糖水,60%高脂饲料,及二者混合方式饲养C57BL/6小鼠3个月后,观察各组小鼠24小时内氧气消耗量,二氧化碳生成量,呼吸商及能量消耗的改变。结果:不同饮食喂饲3个月,与对照组小鼠相比,高果糖组、高脂组、及高果糖高脂组小鼠均表现出明显的肝内脂质蓄积,氧气消耗量增加,呼吸商下降,能量消耗增加。结论:过剩的高热量物质摄入导致机体内物质代谢、能量代谢发生改变,糖代谢受损,脂代谢增强,能量代谢方式从糖氧化为主转变为脂氧化供能。  相似文献   

18.
Objective: To characterize sugar‐sweetened beverage intake of college students. Research Methods and Procedures: Undergraduates in an urban southern community campus were surveyed anonymously about sugared beverage consumption (soda, fruit drinks, energy drinks, sports drinks, sweet ice tea) in the past month. Results: Two hundred sixty‐five undergraduates responded (66% women, 46% minority, 100% of volunteers solicited). Most students (95%) reported sugared beverage intake in the past month, and 65% reported daily intake. Men were more likely than women to report daily intake (74% vs. 61%, p = 0.035). Soda was the most common sugar‐sweetened beverage. Black undergraduates reported higher sugared beverage intake than whites (p = 0.02), with 91% of blacks reporting sugar‐sweetened fruit drink intake in the past month and 50% reporting daily consumption. Mean estimated caloric intake from combined types of sugar‐sweetened beverages was significantly higher among black students than whites, 796 ± 941 vs. 397 ± 396 kcal/d (p = 0.0003); the primary source of sugar‐sweetened beverage calories among blacks was sugared fruit drinks (556 ± 918 kcal/d). Younger undergraduates reported significantly higher intake than older students (p = 0.025). Discussion: Self‐reported sugar‐sweetened beverage consumption among undergraduates is substantial and likely contributes considerable non‐nutritive calories, which may contribute to weight gain. Black undergraduates may be particularly vulnerable due to higher sugared beverage intake. Obesity prevention interventions targeting reductions in sugar‐sweetened beverages in this population merit consideration.  相似文献   

19.
Aluminum is a commonly occurring trace element for which no nutritional requirements have been set. Some non-conclusive evidence exists suggesting a need of aluminum for growth, reproduction or health of man and animals. There is concern that exposure or consumption of aluminum may be toxic to humans and animals. The objective of the current study was to compare tissue levels of aluminum of rats fed soft drinks packaged in aluminum cans, glass bottles or distilled water. Thirty male weanling rats (Sprague-Dawley) were divided into three treatment groups of 10 rats each. All rats were fed rodent chow ad libitum throughout the study. Three different fluids, i.e. distilled water, diet soft drinks from aluminum cans and diet soft drinks from glass bottles, were fed for a period of 3 weeks. Aluminum contents of tissues were measured by atomic absorption spectrophotometry. Canned soft drink fed rats had significantly higher blood, liver and bone aluminum concentration than rats that were given glass bottled soft drink. There was a 69% higher bone aluminum concentration and 16% lower femur weight in rats fed aluminum canned soft drinks when compared with rats fed with distilled water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号