首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
The physiology and biochemistry of Sarcina ventriculi was studied in order to determine adaptations made by the organism to changes in environmental pH. The organism altered carbon and electron flow from acetate, formate and ethanol production at neutral pH, to predominantly ethanol production at pH 3.0. Increased levels of pyruvate dehydrogenase (relative to pyruvate decarboxylase) and acetaldehyde dehydrogenase occurred when the organism was grown at neutral pH, indicating the predominance of carbon flux through the oxidative branch of the pathway for pyruvate metabolism. When the organism was grown at acid pH, there was a significant increase in pyruvate decarboxylase levels and a decrease in acetaldehyde dehydrogenase, causing flux through the non-oxidative branch of the pathway. CO2 reductase and formate dehydrogenase were not regulated as a function of growth pH. Pyruvate dehydrogenase possessed Michaelis-Menten kinetics for pyruvate with an apparent K m of 2.5 mM, whereas pyruvate decarboxylase exhibited sigmoidal kinetics, with a S0.5 of 12.0 mM. Differences in total protein banding patterns from cells grown at pH extremes suggested that synthesis of pyruvate decarboxylase and other enzymes was in part responsible for metabolic regulation of the fermentation products formed.  相似文献   

2.
The effect of different amounts of supplemented l-isoleucine and pantothenate has been analysed with the auxotrophic strain Corynebacterium glutamicum ΔilvA ΔpanB, showing that the final biomass concentration of this preliminary l-valine production strain can be controlled by the amount of added l-isoleucine. One gramme cell dry weight is formed from 48 μmol l-isoleucine. Different amounts of available pantothenate affect the intracellular pyruvate concentration. By limiting pantothenate supplementation from 0.8 to 0.1 μM, a 35-fold increase of cytoplasmic pyruvate up to 14.2 mM can be observed, resulting in the increased formation of l-valine, l-alanine and organic acids in the presence of low pantothenate concentrations. These findings can be used to redirect the carbon flux from glycolysis via pyruvate to the TCA cycle towards the desired product l-valine.  相似文献   

3.
Coenzyme A (CoA) and its thioester derivative acetyl-Coenzyme A (acetyl-CoA) participate in over 100 different reactions in intermediary metabolism of microorganisms. Earlier results indicated that overexpression of upstream rate-limiting enzyme pantothenate kinase with simultaneous supplementation of precursor pantothenic acid to the culture media increased intracellular CoA levels significantly ( approximately 10-fold). The acetyl-CoA levels also increased ( approximately 5-fold) but not as much as that of CoA, showing that the carbon flux from the pyruvate node is rate-limiting upon an increase in CoA levels. In this study, pyruvate dehydrogenase was overexpressed under elevated CoA levels to increase carbon flux from pyruvate to acetyl-CoA. This coexpression did not increase intracellular acetyl-CoA levels but increased the accumulation of extracellular acetate. The production of isoamyl acetate, an industrially useful compound derived from acetyl-CoA, was used as a model reporter system to signify the beneficial effects of this metabolic engineering strategy. In addition, a strain was created in which the acetate production pathway was inactivated to relieve competition at the acetyl-CoA node and to efficiently channel the enhanced carbon flux to the ester production pathway. The synergistic effect of cofactor CoA manipulation and pyruvate dehydrogenase overexpression in the acetate pathway deletion mutant led to a 5-fold increase in isoamyl acetate production. Under normal growth conditions the acetate pathway deletion mutant strains accumulate intracellular pyruvate, leading to excretion of pyruvate. However, upon enhancing the carbon flux from pyruvate to acetyl-CoA, the excretion of pyruvate was significantly reduced.  相似文献   

4.
5.
Styles nurture and guide pollen tubes to the ovules. The styles of Nicotiana tabacum, a C3 plant, contain a concentric strand of transmitting tract cells replete with well-developed chloroplasts. It is shown that the chloroplasts have normal ultrastructure and electron transport ability. However, they were found to be devoid of Rubisco, the key enzyme responsible for carbon fixation in C3 plants. Nevertheless, non-invasive fluorescence techniques showed a light-driven photosynthetic flux. Carbon fixation via phosphoenol pyruvate carboxylase (PEPC) into malate was demonstrated, the latter accumulating during stylar development. Characterization of stylar PEPC in vitro and in vivo revealed apparent Km values consistent with bicarbonate as a rate limiting factor for photosynthetic flux. Presumably, in the closed confines of the intact style, respired CO2 is the source of carbonate. Enhanced photosynthetic flux was detected following pollination, suggesting utilization of the additional respired bicarbonate and underlining metabolic interactions between the style and the elongating pollen tube.  相似文献   

6.
The enzyme targets for the rational optimization of a Corynebacterium glutamicum strain constructed for valine production are identified by analyzing the control of flux in the valine/leucine pathway. The control analysis is based on measurements of the intracellular metabolite concentrations and on a kinetic model of the reactions in the investigated pathway. Data‐driven and model‐based methods are used and evaluated against each other. The approach taken gives a quantitative evaluation of the flux control and it is demonstrated how the understanding of flux control is used to reach specific recommendations for strain optimization. The flux control coefficients (FCCs) with respect to the valine excretion rate were calculated, and it was found that the control is distributed mainly between the acetohydroxyacid synthase enzyme (FCC = 0.32), the branched chain amino acid transaminase (FCC = 0.27), and the exporting translocase (FCC = 0.43). The availability of the precursor pyruvate has substantial influence on the valine flux, whereas the cometabolites are less important as demonstrated by the calculation of the respective response coefficients. The model is further used to make in‐silico predictions of the change in valine flux following a change in enzyme level. A doubling of the enzyme level of valine translocase will result in an increase in valine flux of 31%. By optimizing the enzyme levels with respect to valine flux it was found that the valine flux can be increased by a factor 2.5 when the optimal enzyme levels are implemented. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

7.
Fluxes of central carbon metabolism [glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA cycle), biomass formation] were determined for several Bacillus megaterium strains (DSM319, WH320, WH323, MS941) in C- and N-limited chemostat cultures by 13C labelling experiments. The labelling patterns of proteinogenic amino acids were analysed by GC/MS and therefrom flux ratios at important nodes within the metabolic network could be calculated. On the basis of a stoichiometric metabolic model flux distributions were estimated for the different B. megaterium strains used at various cultivation conditions. Generally all strains exhibited similar metabolic flux distributions, however, several significant changes were found in (1) the glucose flux entering the PPP via the oxidative branch, (2) the reversibilities within the PPP, (3) the relative fluxes of pyruvate and acetyl-CoA fed to the TCA cycle, (4) the fluxes around the pyruvate node involving a futile cycle.  相似文献   

8.
The aim of this work was to investigate the fate of phosphoenolpyruvate (PEP) produced by decarboxylation of oxaloacetate during photosynthesis in the bundle sheaths of leaves of the PEP-carboxykinase C4 grass Spartina anglica Hubb. Mesophyll protoplasts and bundle sheath cells were separated enzymically and used to investigate activities and distributions of putative enzymes of the C4 cycle and the photosynthetic carbon metabolism of bundle sheath cells. The results indicate that neither conversion of PEP to pyruvate nor its conversion to 3-phosphoglycerate can account for all of the carbon flux through the C4 cycle during photosynthesis. It is likely, therefore, either that PEP moves directly from bundle sheath to mesophyll or that more than one pathway of regeneration of PEP is involved in the C4 cycle in this plant.Abbreviations Chl chlorophyll - PEP phosphoenolpyruvate - Pi phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

9.
Cofactor recycling is known to be crucial for amino acid synthesis. Hence, cofactor supply was now analyzed for L ‐valine to identify new targets for an improvement of production. The central carbon metabolism was analyzed by stoichiometric modeling to estimate the influence of cofactors and to quantify the theoretical yield of L ‐valine on glucose. Three different optimal routes for L ‐valine biosynthesis were identified by elementary mode (EM) analysis. The modes differed mainly in the manner of NADPH regeneration, substantiating that the cofactor supply may be crucial for efficient L ‐valine production. Although the isocitrate dehydrogenase as an NADPH source within the tricarboxylic acid cycle only enables an L ‐valine yield of YVal/Glc = 0.5 mol L ‐valine/mol glucose (mol Val/mol Glc), the pentose phosphate pathway seems to be the most promising NADPH source. Based on the theoretical calculation of EMs, the gene encoding phosphoglucoisomerase (PGI) was deleted to achieve this EM with a theoretical yield YVal/Glc = 0.86 mol Val/mol Glc during the production phase. The intracellular NADPH concentration was significantly increased in the PGI‐deficient mutant. L ‐Valine yield increased from 0.49 ± 0.13 to 0.67 ± 0.03 mol Val/mol Glc, and, concomitantly, the formation of by‐products such as pyruvate was reduced. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
The aim of this work was to describe the photosynthetic carbon metabolism of the cooltemperate C4 grass Spartina anglica. With the exception of pyruvate, phosphate dikinase and pyruvate kinase, the maximum catalytic activities in leaves of putative enzymes of the C4 cycle of a phosphoenolpyruvate-carboxykinase C4 plant were considerably in excess of the observed, steady-state rate of photosynthesis, and were comparable with the maximum catalytic activities of key enzymes of the reductive pentose-phosphate pathway. Radioactive carbon from 14CO2 supplied to attached leaves during steady-state photosynthesis appeared first in malate and aspartate from which it moved to intermediates of the reductive pentose-phosphate pathway, and then to sucrose. These experiments show that photosynthetic carbon metabolism in this cool-temperate C4 plant is similar to that of C4 plants of hotter climates.  相似文献   

11.
A probable carbon flow from the Calvin cycle to branched chain amino acids and lipids via phosphoenolpyruvate (PEP) and pyruvate was examined in spinach (Spinacia oleracea) chloroplasts. The interpendence of metabolic pathways in and outside chloroplasts as well as product and feedback inhibition were studied. It was shown that alanine, aromatic, and small amounts of branched chain amino acids were formed from bicarbonate in purified intact chloroplasts. Addition of PEP only favored formation of aromatic amino acids. Mechanisms of regulation remained unclear. Concentrations of PEP and pyruvate within the chloroplast impermeable space during photosynthetic carbon fixation were 15 times higher than in the reaction medium. A direct carbon flow to pyruvate was identified (0.1 micromoles per milligram chlorophyll per hour). Pyruvate was taken up by intact chloroplasts slowly, leading to the formation of lysine, alanine, valine, and leucine plus isoleucine (approximate ratios, 100-500:60-100:40-100:2-10). The Km for the formation of valine and leucine plus isoleucine was estimated to be 0.1 millimolar. Ten micromolar glutamate optimized the transamination reaction regardless of whether bicarbonate or pyruvate was being applied. Alanine and valine formation was enhanced by the addition of acetate to the reaction mixture. The enhancement probably resulted from an inhibition of pyruvate dehydrogenase by acetyl-S-coenzyme A formed from acetate, and resulting accumulation of hydroxyethylthiamine diphosphate and pyruvate. High concentrations of valine and isoleucine inhibited their own and each others synthesis and enhanced alanine formation. When pyruvate was applied, only amino acids were formed; when complemented with bicarbonate, fatty acids were formed as well. This is probably the result of a requirement of acetyl-S-coenzyme A-carboxylase for bicarbonate.  相似文献   

12.
Carbon flow in Bacillus subtilis through the pentose phosphate (PP) pathway was modulated by overexpression of glucose-6-phosphate dehydrogenase (G6PDH) under the control of the inducible Pxyl promoter in B. subtilis PY. Alteration of carbon flow into the PP pathway will affect the availability of ribulose-5-phosphate (Ru5P) and the riboflavin yield. Overexpression of G6PDH resulted in the glucose consumption rate increasing slightly, while the specific growth rate was unchanged. An improvement by 25% ± 2 of the riboflavin production was obtained. Compared to by-products formation in flask culture, low acid production (acetate and pyruvate) and more acetoin were observed. Metabolic analysis, together with carbon flux redistribution, indicated that the PP pathway fluxes are increased in response to overexpression of G6PDH. Moreover, increased flux of the PP pathway is associated with an increased intracellular pool of Ru5P, which is a precursor for riboflavin biosynthesis. The high concentrations of Ru5P could explain the increased riboflavin production.  相似文献   

13.
14.
The carbon flux distribution in the central metabolism of Corynebacterium glutamicum was studied in batch cultures using [1-13C]- and [6-13C]glucose as substrate during exponential growth as well as during overproduction of l-lysine and l-glutamate. Using the 13C NMR data in conjunction with stoichiometric metabolite balances, molar fluxes were quantified and normalised to the glucose uptake rate, which was set to 100. The normalised molar flux via the hexose monophosphate pathway was 40 during exponential growth, whereas it was only 17 during l-glutamate production. During l-lysine production, the normalised hexose monophosphate pathway flux was elevated to 47. Thus, the carbon flux via this pathway correlated with the NADPH demand for bacterial growth and l-lysine overproduction. The normalised molar flux in the tricarboxylic acid cycle at the level of 2-oxoglutarate dehydrogenase was 100 during exponential growth and 103 during l-lysine secretion. During l-glutamate formation, the normalised flux through the tricarboxylic acid cycle was reduced to 60. In contrast to earlier NMR studies with C. glutamicum, no significant activity of the glyoxylate pathway could be detected. All experiments indicated a strong in vivo flux from oxaloacetate back to phosphoenolpyruvate and/or pyruvate, which might be due to phosphoenolpyruvate carboxykinase activity in C. glutamicum.  相似文献   

15.
Earlier labeling experiments have shown that autotrophically grown Acetobacterium woodii assimilates cell carbon via direct acetyl CoA formation from 2 CO2, rather than via the Calvin cycle. Cell extracts contained the enzymes required for biosynthesis starting from acetyl CoA and CO2. Notably, pyruvate synthase, pyruvate phosphate dikinase, and phosphoenolpyruvate carboxytransphosphorylase were present in sufficiently high activities. Ribulose-1,5-bisphosphate carboxylase activity could not be detected. The observed enzyme pattern was consistent with the postulated biosynthetic pathway as deduced from 14C-labeling experiments.  相似文献   

16.
Plant oils are an important renewable resource, and seed oil content is a key agronomical trait that is in part controlled by the metabolic processes within developing seeds. A large‐scale model of cellular metabolism in developing embryos of Brassica napus (bna572) was used to predict biomass formation and to analyze metabolic steady states by flux variability analysis under different physiological conditions. Predicted flux patterns are highly correlated with results from prior 13C metabolic flux analysis of B. napus developing embryos. Minor differences from the experimental results arose because bna572 always selected only one sugar and one nitrogen source from the available alternatives, and failed to predict the use of the oxidative pentose phosphate pathway. Flux variability, indicative of alternative optimal solutions, revealed alternative pathways that can provide pyruvate and NADPH to plastidic fatty acid synthesis. The nutritional values of different medium substrates were compared based on the overall carbon conversion efficiency (CCE) for the biosynthesis of biomass. Although bna572 has a functional nitrogen assimilation pathway via glutamate synthase, the simulations predict an unexpected role of glycine decarboxylase operating in the direction of NH4+ assimilation. Analysis of the light‐dependent improvement of carbon economy predicted two metabolic phases. At very low light levels small reductions in CO2 efflux can be attributed to enzymes of the tricarboxylic acid cycle (oxoglutarate dehydrogenase, isocitrate dehydrogenase) and glycine decarboxylase. At higher light levels relevant to the 13C flux studies, ribulose‐1,5‐bisphosphate carboxylase activity is predicted to account fully for the light‐dependent changes in carbon balance.  相似文献   

17.
川西贡嘎山峨眉冷杉成熟林生态系统CO2通量特征   总被引:1,自引:0,他引:1  
张元媛  朱万泽  孙向阳  胡兆永 《生态学报》2018,38(17):6125-6135
成熟森林的碳收支对陆地生态系统碳循环研究具有重要意义。目前,我国关于西南亚高山暗针叶林成熟林碳通量的研究还相对较少,尚不明确对碳循环的作用。以涡度相关技术为基础,对川西贡嘎山东坡峨眉冷杉成熟林生态系统尺度的CO_2通量进行长期定位观测。利用2015年6月至2016年5月观测数据,分析了峨眉冷杉成熟林净生态系统CO_2交换量(NEE)、生态系统呼吸(Re)和总生态系统生产力(GPP)的季节变异特征及其源汇状况,并结合环境因子,分析CO_2通量的主要控制因子。结果表明:(1)峨眉冷杉成熟林NEE具有明显的日变化特征,呈现"U"形变化,白天为负值,夜间为正值,中午前后CO_2通量达到最大;各月间日平均NEE变化差异显著,NEE峰值最大出现在2015年6月(-0.64 mg CO_2m~(-2)s~(-1)),峰值最小出现在2016年1月(-0.08 mg CO_2m~(-2)s~(-1));日平均NEE由正值变为负值的时间夏季最早,冬季最晚,NEE由负值变为正值的时间冬季最早,夏季最晚。(2)峨眉冷杉成熟林NEE、Re和GPP具有明显的月变化。2015年6月和12月NEE分别达到最大值(-46.02 g C m~(-2)月~(-1))和最小值(-1.42 g C m~(-2)月~(-1));Re呈现单峰变化,最大和最小值分别出现在2015年6月(84.78 g C m~(-2)月~(-1))和2016年1月(12.82 g C m~(-2)月~(-1));GPP最大值和最小值分别出现在2015年6月(130.81 g C m~(-2)月~(-1))与2016年1月(16.15 g C m~(-2)月~(-1))。(3)空气温度(T_a)、5 cm土壤温度(T_(s5))和光合有效辐射(PAR)是影响峨眉冷杉成熟林CO_2通量的主要环境因子。T_a与CO_2通量呈指数相关(R~2=0.5283,P0.01);白天CO_2通量与PAR显著相关(R~2=0.4373,P0.01);夜晚CO_2通量与T_(s5)显著相关(R~2=0.4717,P0.01)。(4)全年NEE、Re和GPP分别为-241.87、564.81 g C m~(-2)和806.68 g C m~(-2),表明川西贡嘎山峨眉冷杉成熟林具有较强的碳汇功能。  相似文献   

18.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

19.
Summary A comparative study has been made of the metabolism in several strains of Thiobacillus neapolitanus of formate, acetate, propionate, butyrate, valerate and pyruvate. Conflicting reports in the literature concerning the mechanism of pyruvate assimilation in thiobacilli have been resolved. Pyruvate undergoes decarboxylation to yield acetyl coenzyme A, which is converted to glutamate, proline and arginine via reactions of the incomplete Krebs' cycle of this organism. Pyruvate is converted also to alanine, valine, isoleucine, leucine and lysine by mechanisms like those in heterotrophs. No aspartate is formed from the C-3 of pyruvate. Removal of the C-1 of pyruvate yields carbon dioxide, which is refixed into all cell constituents. Formate is not produced by this scission reaction, as formate itself is incorporated almost exclusively into purines. Aspartate can be synthesized by the activities of phosphoenolpyruvate carboxylase and oxaloacetate-glutamate transamination. Carbon from propionate is converted principally to lipids, although some amino acid production occurs with the same distinctive labelling pattern as is found after acetate assimilation by T. neapolitanus strains C and X. Butyrate and valerate also showed some distinctive patterns of incorporation into cell constituents. Fluoropyruvate and fluoropropionate inhibited the growth of T. neapolitanus and the mechanisms of this poisoning are discussed.Generally these compounds contributed only small proportions of the total cell carbon and tended to be converted to limited numbers of cell components. The thiobacilli thus tend to conserve carbon from these compounds and not to degrade them to carbon dioxide on a large scale when growing in an otherwise autotrophic medium.  相似文献   

20.
A program implementing a flux model of Escherichia coli metabolism was used to analyze the effects of the addition of amino acids (tryptophan, tyrosine, phenylalanine, leucine, isoleucine, valine, histidine, lysine, threonine, cysteine, methionine, arginine, proline) to minimal medium or media lacking nitrogen, carbon, or both. The overall response of the metabolic system to the addition of various amino acids to the minimal medium is similar. Glycolysis and the synthesis of pyruvate with its subsequent degradation to acetate via acetyl-CoA become more efficient, whereas the fluxes through the pentose phosphate pathway and the TCA cycle decrease. If amino acids are used as the sole source of carbon, nitrogen, or both, the changes in the flux distribution are determined mainly by the carbon limitation. The phosphoenolpyruvate to glucose-6-phosphate flux increases; the flux through the pentose phosphate path is directed towards ribulose-5-phosphate. Other changes are determined by the compounds that are the primary products of catabolism of the added amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号