首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most of the published studies on azo dye colour removal involve anaerobic mixed cultures and there is some interest in the knowledge of how dye reduction occurs, if by facultative, strictly anaerobic or both bacterial trophic groups present in classic anaerobic digestors. This paper describes the behaviour of methanogenic and mixed bacteria cultures on the colour removal in batch systems, of a commercial azo dye, C.I. Acid Orange 7, used in paper and textile industries. The aim of this study is to demonstrate, by analysing dye decolourisation, that it occurs with mixed cultures as well as with strictly anaerobic (methanogenic) cultures. Tests were performed with a range of dye concentrations between 60 and 300 mg l−1. The influence of dye concentration on the carbon source removal and decolourisation processes was studied. The effect of carbon source concentration on colour removal was also analysed for both cultures. The degradation rates in mixed and methanogenic cultures were compared. The consumption of carbon source was monitored by COD analysis and dye degradation by ultraviolet-visible spectrophotometry and thin layer chromatography.  相似文献   

2.
Nitrogen fixation as well as structural and functional properties of the photosynthetic apparatus were studied with phototrophically grown chemostat cultures of Rhodobacter capsulatus strain 37b4. Illumination was varied between 3,000 and 30,000 lx at a constant dilution rate of D=0.075 h-1. Steady state parameters of growth revealed two forms of limitation, i.e. energy limitation in the range of 3,000 to about 10,000 lx and nitrogen limitation at higher illuminations. Over the entire range of illumination, the specific bacteriochlorophyll content and the amount of total bacteriochlorophyll per photochemical reaction center remained essentially constant. Photophosphorylation activity remained constant up to 20,000 lx but was slightly increased at 30,000 lx. Hydrogen evolution and acetylene reduction activities of cellular nitrogenase were assayed under saturating light conditions with samples taken from cultures growing under steady state conditions. In spite of the apparent constancy of the composition and activity of the photosynthetic apparatus under energy limitation, maximal specific acetylene reduction and hydrogen evolution activities increased by factors of 3 and 8, respectively, when illumination of the culture was raised from 3,000 to about 15,000 lx. Above 15,000 lx, both activities of nitrogenase approached constancy.We, therefore, conclude that neither under energy limitation nor under nitrogen limitation the function of nitrogenase depended on the photosynthetic activities. Moreover, it is suggested that light did not influence nitrogenase activity under conditions of nitrogen limitation, while under conditions of energy limitation light seemed to influence nitrogenase activities indirectly via glutamate consumption of the cells.  相似文献   

3.
Abstract: The aerobic chemotrophic sulfur bacterium Thiobacillus thioparus T5 and the anaerobic phototrophic sulfur bacterium Thiocapsa roseopersicina M1 were co-cultured in continuously illuminated chemostats at a dilution rate of 0.05 h−1. Sulfide was the only externally supplied electron donor, and oxygen and carbon dioxide served as electron acceptor and carbon source, respectively. Steady states were obtained with oxygen supplies ranging from non-limiting amounts (1.6 mol O2 per mol sulfide, resulting in sulfide limitation) to severe limitation (0.65 mol O2 per mol sulfide). Under sulfide limitation Thiocapsa was competitively excluded by Thiobacillus and washed out. Oxygen/sulfide ratios between 0.65 and 1.6 resulted in stable coexistence. It could be deduced that virtually all sulfide was oxidized by Thiobacillus . The present experiments showed that Thiocapsa is able to grow phototrophically on the partially oxidized products of Thiobacillus . In pure Thiobacillus cultures in steady state extracellular zerovalent sulfur accumulated, in contrast to mixed cultures. This suggests that a soluble form of sulfur at the oxidation state of elemental sulfur is formed by Thiobacillus as intermediate. As a result, under oxygen limitation colorless sulfur bacteria and purple sulfur bacteria do not competitively exclude each other but can coexist. It was shown that its ability to use partially oxidized sulfur compounds, formed under oxygen limiting conditions by Thiobacillus , helps explain the bloom formation of Thiocapsa in marine microbial mats.  相似文献   

4.
Regulation of fermentative capacity was studied in chemostat cultures of two Saccharomyces cerevisiae strains: the laboratory strain CEN.PK113-7D and the industrial bakers’ yeast strain DS28911. The two strains were cultivated at a fixed dilution rate of 0.10 h−1 under various nutrient limitation regimes: aerobic and anaerobic glucose limitation, aerobic and anaerobic nitrogen limitation on glucose, and aerobic ethanol limitation. Also the effect of specific growth rate on fermentative capacity was compared in glucose-limited, aerobic cultures grown at dilution rates between 0.05 h−1 and 0.40 h−1. Biomass yields and metabolite formation patterns were identical for the two strains under all cultivation conditions tested. However, the way in which environmental conditions affected fermentative capacity (assayed off-line as ethanol production rate under anaerobic conditions) differed for the two strains. A different regulation of fermentative capacity in the two strains was also evident from the levels of the glycolytic enzymes, as determined by in vitro enzyme assays. With the exception of phosphofructokinase and pyruvate decarboxylase in the industrial strain, no clear-cut correlation between the activities of glycolytic enzymes and the fermentative capacity was found. These results emphasise the need for controlled cultivation conditions in studies on metabolic regulation in S. cerevisiae and demonstrate that conclusions from physiological studies cannot necessarily be extrapolated from one S. cerevisiae strain to the other.  相似文献   

5.
Oxygen uptake and glucose and glutamate oxidation kinetics of the heterotrophic bacterium Pseudomonas chlororaphis grown in glucose- or glutamate-limited cultures under oxygen-saturating or oxygen-limiting conditions were determined. K m values for oxygen were 1.4– 5.6 μM. Only in the case of glucose were significantly lower K m values and enhanced specific oxygen affinity (V max/K m) per cell found under oxygen-limiting conditions. Both K m and specific affinity values for glucose and glutamate oxidation were apparently affected by oxygen concentration, although a statistically significant enhancement of the oxidation kinetics was found only for glutamate. The kinetic data found for P. chlororaphis support the conclusion that the outcome of competition for oxygen with Nitrosomonas europaea in the rhizosphere of oxygen-releasing macrophytes will primarily be determined by oxidation kinetics of the electron donor instead of the oxygen uptake kinetics of the respective organisms. Received: 20 September 1996 / Accepted: 5 February 1997  相似文献   

6.
目的对妇女厌氧菌和需氧菌性阴道混合感染发病进行调查分析。方法分别采用Donders高倍镜湿片镜检法和细菌预成酶快速检测法对257例患者进行联合检测。结果257例患者中共检出单纯的需氧菌性阴道感染患者52例,占总人数的20.2%,检出单纯的厌氧菌阴道感染患者125例,占总人数的48.6%,检出厌氧菌和需氧菌性阴道混合感染患者67例,占总人数的26.1%,检出其他感染患者13例,占总人数的5%,经统计学分析,患者的厌氧菌和需氧菌性阴道混合感染的检出率差异无统计学意义(P〉0.05)。结论厌氧菌和需氧菌性阴道混合感染,可以给临床医生应采取合理有效的措施进行及时治疗,防止阴道上行感染的发生。  相似文献   

7.
The rates of bacterial growth in nature are often restricted by low concentrations of oxygen or carbon substrates. In the present study the metabolic properties of 24 isolates that had been isolated using various concentrations of 3-chlorobenzoate, benzoate and oxygen as well as using continuous culture at high and low growth rates were determined to investigate the effects of these parameters on the metabolism of monoaromatic compounds. Bacteria were enriched from different sampling sites and subsequently isolated. In batch culture this was done both under low oxygen (2% O(2)) and air-saturated concentrations. Chemostat enrichments were performed under either oxygen or 3-chlorobenzoate limiting conditions. Bacteria metabolizing aromatics with gentisate or protocatechuate as intermediates (gp bacteria) as well as bacteria metabolizing aromatic compounds via catechols (cat bacteria) were isolated from batch cultures when either benzoate or 3CBA were used as C sources, regardless of the enrichment conditions applied. In contrast, enrichments performed in chemostats at low dilution rates resulted in gp-type organisms only, whereas at high dilution rates cat-type organisms were enriched, irrespective of the oxygen and 3-chlorobenzoate concentration used during enrichment. It is noteworthy that the gp-type of bacteria possessed relatively low μ(max) values on 3CBA and benzoate along with relatively high substrate and oxygen affinities for these compounds. This is in contrast with cat-type of bacteria, which seemed to be characterized by high maximum specific growth rates on the aromatic substrates and relatively high apparent half saturation constants. In contrast, bacteria degrading chlorobenzoate via gentisate or protocatechuate may possibly be better adapted to conditions leading to growth at reduced rates such as low oxygen and low substrate concentrations.  相似文献   

8.
Abstract: Pseudomonas aeruginosa, P. stutzeri and Azospirillum brasilense showed highest NO production rates and NO consumption rate constants when anaerobically grown cells were tested under anaerobic conditions. Aerobic assay conditions resulted in 20–75-fold lower NO production rates. NO consumption rate constants, however, decreased by less than a factor of four. NO consumption activity was observed even in aerobically grown P. aeruginosa , provided the assay was done under anaerobic conditions. Obviously, NO consumption was less O2-sensitive than NO production so that compensation between production and consumption occurred at lower NO mixing ratios under aerobic than under anaerobic conditions.  相似文献   

9.
Abstract Oral Streptococcus species experience carbohydrate limitation interrupted by periods of substrate excess following food intake by the host. To investigate the competitiveness of various streptococcal species under fluctuating carbohydrate supply, 2-membered chemostat cultures were run.
Under continuous limitation of glucose or sucrose, all 6 Streptococcus mutans test strains were outcompeted by Streptococcus sanguis P4A7 or Streptococcus milleri B448. This indicated that S. mutans had a lower affinity for glucose and sucrose than S. sanguis and S. milleri .
Mixed cultures were then subjected to hourly pulses with glucose. Under these conditions S. mutans Ny344 competed successfully with S. milleri B448, but still lost the competition against S. sanguis P4A7. The streptococci responded to pulses by taking up glucose at the maximum rate almost instantaneously. S. sanguis P4A7 had the highest rate of glucose uptake while the q max value of S. mutans Ny344 was higher than that of S. milleri B448. This suggested a causal relationship between q max and competitiveness.  相似文献   

10.
Growth of Oscillatoria agardhil was studied in ammonium-limited chemostat cultures, at various dilution rates (=growth rates, μ). The uptake kinetics for ammonium of nitrogen (ammonium or nitrate)-limited chemostat cultures also was investigated. The kinetics of ammonium-limited growth could be adequately described by both the Monod and Droop equations, and were closely similar to the nitrate-limited growth kinetics of this species. The uptake kinetics for ammonium showed similarities as well as differences with the uptake kinetics for nitrate. The similarities were apparent in the uptake capacity values for ammonium and nitrate , which were identical, high and independent of μ. The differences were to be found in the half-saturation constants for ammonium uptake and nitrate uptake , the former being hardly influenced by μ. A consitutive, high affinity, system is likely to operate in the uptake and assimilation of ammonium by nitrogen-limited O. agardhii. The use of ammonium uptake parameters in studies of growth-limiting factors in nature can provide information as to whether a nitrogen-limitation prevails in natural habitats of this species.  相似文献   

11.
Chemostat cultures of carrot suspension cultures, where growth was limited by the concentration of phosphate in the input medium, were achieved by replacing a fixed proportion of the culture with fresh medium at daily intervals. In the range 0.05–0.30mM phosphate in the input medium and at a specific growth rate of 0.357 days?1, steady-state culture density but not anthocyanin in the cells was strictly proportional to the input phosphate concentration with no intercept. At a phosphate concentration of 0.10mM and growth rates from 0.105 to 0.430 days?1, the steady-state culture density could not be described by Monod's model of chemostat cultures, but could be described by Nyholm's model. The steady-state levels of anthocyanin were not strictly proportional to the steady-state biomass under all conditions, showing that anthocyanin production is not completely growth associated.  相似文献   

12.
Abstract The occurrence and properties were studied of glucose-metabolizing bacteria present in the anaerobic sediment 5–10 cm below the surface of an estuarine tidal mud-flat. Of all these bacteria (104– 105 per g wet sediment) 80–90% were facultatively anaerobic species. Chemostat enrichments on glucose under aerobic, oxygen-limited and alternately aerobic-anaerobic conditions also yielded cultures dominated by facultative anaerobes. One of the dominant species, tentatively identified as a Vibrio sp., was studied in more detail under oxygen-limiting conditions. Fermentative and respiratory metabolisms were found to operate simultaneously, and the ratio between the two was regulated by the extent of oxygen limitation. A small fraction of the acetate formed under such growth conditions was shown to be subsequently respired. A co-culture was established of the Vibrio sp. and a sulfate-reducing bacterium ( Desulfovibrio HL21 ) in an aerated chemostat. The importance of these observations is discussed in relation to the role of facultative anaerobes in anaerobic habitats.  相似文献   

13.
14.
The effect of nitrate availability on characteristics of the nitrate assimilatory system was investigated in N-limited barley (Hordeum valgare L. cv. Golf), grown with the seminal root system split into initially equal-sized halves. The cultures were continuously supplied with nitrate-N at a relative addition rate (RA) of 0.09 day?1, which resulted in relative growth rates (RG) that were ca 85% of those observed under surplus nitrate nutrition. The total N addition was divided between the subroots in ratios of 100:0, 80:20, 70:30, 60:40, and 50:50. For comparison, standard cultures were grown at RAs ranging from 0.03 to 0.18 day?1. Initially, biomass and N partitioning to the subroots responded strongly and proportionally to the nitrate distribution ratio. After 12-14 days no further effect was observed. The Vmax for net nitrate uptake and in vitro nitrate reductase (NR) activity were measured in acclimated plants, i.e., after > 14 days under a certain nitrate regime. In subroots fed from 20 to 100% of the total N addition, Vmax for net nitrate uptake increased slightly, whereas NR activity was unaffected. Uptake and NR activities were insignificant in the 0%-subroot. Uneven nitrate supply to individual subroots had negligible effect on the whole-plant ability for nitrate uptake, and the relative Vmax (unit N taken up per unit N in whole plant tissue and time) remained about 7-fold in excess of the demand set by growth. Balancing nitrate concentrations (the resulting external nitrate concentrations at a certain RA) generally ranged between 2 and 10 μM at growth-limiting RA, both when predicted from uptake kinetics and when actually measured. When comparing split root and standard cultures when acclimated, it appears that uptake and NR activities in roots respond more strongly to over-all nitrate availability than to nitrate availability to individual subroots.  相似文献   

15.
Fourier-transform infrared (FT-IR) spectroscopy is known as a high-resolution method for the rapid identification of pure cultures of microorganisms. Here, we evaluated FT-IR as a method for the quantification of bacterial populations in binary mixed cultures consisting of Pseudomonas putida and Rhodococcus ruber. A calibration procedure based on Principal Component Regression was developed for estimating the ratio of the bacterial species. Data for method calibration were gained from pure cultures and artificially assembled communities of known ratios of the two member populations. Moreover, to account for physiological variability, FT-IR measurements were performed with organisms sampled at different growth phases. Measurements and data analyses were subsequently applied to growing mixed cultures revealing that growth of R. ruber was almost completely suppressed in co-culture with P. putida. Population ratios obtained by fatty acid analysis as an independent reference method were in high agreement with the FT-IR derived ratios.  相似文献   

16.
Abstract Incorporation of [ methyl -3H]thymidine into bacterial DNA was determined for a range of axenic anaerobic bacterial cultures: fermentative heterotrophs, sulphate-reducing bacteria, purple sulphur bacteria, acetogens and methanogens. Anaerobically growing Bacillus sp. and the obligate aerobe Thiobacillus ferrooxidans were also investigated. Actively growing cultures of sulphate-reducing bacteria belonging to the genera Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfobotulus and Desulfobulbus , purple sulphur bacteria ( Chromatium vinosum OP2 and Thiocapsa roseopersicina OP1), methanogens ( Methanococcus GS16 and Methanosarcina barkeri ) and an acetogen ( Acetobacterium woodii ) did not incorporate [ methyl -3H]thymidine into DNA. The only obligate anaerobes in which thymidine incorporation into DNA could be unequivocally demonstrated were members of the genus Clostridium . Anaerobically growing Bacillus sp. also incorporated thymidine. These data demonstrate that pure culture representatives of major groups of anaerobic bacteria involved in the terminal oxidation of organic carbon and anoxygenic phototrophs within sediments are unable to incorporate [ methyl -3H]thymidine into DNA, although some obligate and facultative anaerobes can. Variability in thymidine incorporation amongst pure culture isolates indicates that unless existing techniques can be calibrated to take this into consideration then productivity estimates in both aerobic and anaerobic environments may be greatly underestimated using the [ methyl -3H]thymidine technique.  相似文献   

17.
18.
Aerobic chemostat cultures of Saccharomyces cerevisiae were performed under carbon-, nitrogen-, and dual carbon- and nitrogen-limiting conditions. The glucose concentration was kept constant, whereas the ammonium concentration was varied among different experiments and different dilution rates. It was found that both glucose and ammonium were consumed at the maximal possible rate, i.e., the feed rate, over a range of medium C/N ratios and dilution rates. To a small extent, this was due to a changing biomass composition, but much more important was the ability of uncoupling between anabolic biomass formation and catabolic energy substrate consumption. When ammonium started to limit the amount of biomass formed and hence the anabolic flow of glucose, this was totally or at least partly compensated for by an increased catabolic glucose consumption. The primary response when glucose was present in excess of the minimum requirements for biomass production was an increased rate of respiration. The calculated specific oxygen consumption rate, at D = 0.07 h-1, was more than doubled when an additional nitrogen limitation was imposed on the cells compared with that during single glucose limitation. However, the maximum respiratory capacity decreased with decreasing nitrogen concentration. The saturation level of the specific oxygen consumption rate decreased from 5.5 to 6.0 mmol/g/h under single glucose limitation to about 4.0 mmol/g/h at the lowest nitrogen concentration tested. The combined result of this was that the critical dilution rate, i.e., onset of fermentation, was as low as 0.10 h-1 during growth in a medium with a low nitrogen concentration compared with 0.20 h-1 obtained under single glucose limitation.  相似文献   

19.
The basis for the outcome of competition between sulfidogens and methanogens for H2 was examined by comparing the kinetic parameters of representatives of each group separately and in co-culture. Michaelis-Menten parameters (V max and K m) for four methanogens and five sulfate-reducing bacteria were determined from H2-depletion data. Further, Monod growth parameters (max, K s, Y H2) for Desulfovibrio sp. G11 and Methanospirillum hungatei JF-1 were similarly estimated. H2 K m values for the methanogenic bacteria ranged from 2.5 M (Methanospirillum PM1) to 13 M for Methanosarcina barkeri MS; Methanospirillum hungatei JF-1 and Methanobacterium PM2 had intermediate H2 K m estimates of 5 M. Average H2 K m estimates for the five sulfidogens was 1.2 M. No consistent difference among the V max estimates for the above sulfidogens (mean=100 nmol H2 min-1 mg-1 protein) and methanogens (mean=110 nmol H2 min-1 mg-1 protein) was found. A two-term Michaelis-Menten equation accurately predicted the apparent H2 K m values and the fate of H2 by resting co-cultures of sulfate-reducers and methanogens. Half-saturation coefficients (K s) for H2-limited growth of Desulfovibrio sp. G11 (2–4 M) and Methanospirillum JF-1 (6–7 M) were comparable to H2 K m estimates obtained for these organisms. Maximum specific growth rates for Desulfovibrio sp. G11 (0.05 h-1) were similar to those of Methanospirillum JF-1 (0.05–0.06 h-1); whereas G11 had an average yield coefficient 4 x that of JF-1. Calculated max and V max/K m values for the methanogens and sulfidogens studied predict that the latter bacterial group will process more H2 whether these organisms are in a growing or resting state, when the H2 concentration is in the first-order region.  相似文献   

20.
Several metabolic fluxes were analyzed during gradual transitions from aerobic to oxygen-limited conditions in chemostat cultures of Pseudomonas mendocina growing in synthetic medium at a dilution rate of 0.25 h-1. P. mendocina growth was glucose limited at high oxygen partial pressures (70 and 20% pO2) and exhibited an oxidative type of metabolism characterized by respiratory quotient (RQ) values of 1.0. A similar RQ value was obtained at low pO2 (2%), and detectable levels of acetic, formic, and lactic acids were determined in the extracellular medium. RQs of 0.9 +/- 0.12 were found at 70% pO2 for growth rates ranging from 0.025 to 0.5 h-1. At high pO2, the control coefficients of oxygen on catabolic fluxes were 0.19 and 0.22 for O2 uptake and CO2 production, respectively. At low pO2 (2%), the catabolic and anabolic fluxes were highly controlled by oxygen. P. mendocina showed a mixed-type fermentative metabolism when nitrogen was flushed into chemostat cultures. Ethanol and acetic, lactic, and formic acids were excreted and represented 7.5% of the total carbon recovered. Approximately 50% of the carbon was found as uronic acids in the extracellular medium. Physiological studies were performed under microaerophilic conditions (nitrogen flushing) in continuous cultures for a wide range of growth rates (0.03 to 0.5 h-1). A cell population, able to exhibit a near-maximum theoretical yield of ATP (YmaxATP = 25 g/mol) with a number of ATP molecules formed during the transfer of an electron towards oxygen along the respiration chain (P/O ratio) of 3, appears to have adapted to microaerophilic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号