首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2-Hydroxy fatty acids are relatively minor species of membrane lipids found almost exclusively as N-acyl chains of sphingolipids. In mammals, 2-hydroxy sphingolipids are uniquely abundant in myelin galactosylceramide and sulfatide. Despite the well-documented abundance of 2-hydroxy galactolipids in the nervous system, the enzymatic process of the 2-hydroxylation is not fully understood. To fill this gap, we have identified a human fatty acid 2-hydroxylase gene (FA2H) that is highly expressed in brain. In this report, we test the hypothesis that FA2H is the major fatty acid 2-hydroxylase in mouse brain and that free 2-hydroxy fatty acids are formed as precursors of myelin 2-hydroxy galactolipids. The fatty acid compositions of galactolipids in neonatal mouse brain gradually changed during the course of myelination. The relative ratio of 2-hydroxy versus nonhydroxy galactolipids was very low at 2 days of age ( approximately 8% of total galactolipids) and increased 6- to 8-fold by 30 days of age. During this period, free 2-hydroxy fatty acid levels in mouse brain increased 5- to 9-fold, and their composition was reflected in the fatty acids in galactolipids, consistent with a precursor-product relationship. The changes in free 2-hydroxy fatty acid levels coincided with fatty acid 2-hydroxylase activity and with the upregulation of FA2H expression. Furthermore, mouse brain fatty acid 2-hydroxylase activity was inhibited by anti-FA2H antibodies. Together, these data provide evidence that FA2H is the major fatty acid 2-hydroxylase in brain and that 2-hydroxylation of free fatty acids is the first step in the synthesis of 2-hydroxy galactolipids.  相似文献   

2.
Ceramide is unusually abundant in epidermal stratum corneum and is important for permeability barrier function. Ceramides in epidermis also comprise an unusual variety, including 2-hydroxy (alpha-hydroxy)-ceramide. Six mammalian ceramide synthase/longevity assurance homologue (CerS/LASS) family members have been identified as synthases responsible for ceramide (CER) production. We reveal here that of the six, CerS3/LASS3 mRNA is the most predominantly expressed in keratinocytes. Moreover, its expression is increased upon differentiation. CerS family members have known substrate specificities for fatty acyl-CoA chain length and saturation, yet their abilities to produce 2-hydroxy-CER have not been examined. In the present study, we demonstrate that all CerS members can produce 2-hydroxy-CER when overproduced in HEK 293T cells. Each produced a 2-hydroxy-CER with a chain length similar to that of the respective nonhydroxy-CER produced. In HeLa cells overproducing the FA 2-hydroxylase FA2H, knock-down of CerS2 resulted in a reduction in total long-chain 2-hydroxy-CERs, confirming enzyme substrate specificity for chain length. In vitro CerS assays confirmed the ability of CerS1 to utilize 2-hydroxy-stearoyl-CoA as a substrate. These results suggest that all CerS members can synthesize 2-hydroxy-CER with specificity for 2-hydroxy-fatty acyl-CoA chain length and that CerS3 may be important in CER and 2-hydroxy-CER synthesis in epidermis.  相似文献   

3.
Sphingolipids are bioactive lipids present in all eukaryotes. Tetrahymena thermophila is a ciliate that displays remarkable sphingolipid moieties, that is, the unusual phosphonate-linked headgroup ceramides, present in membranes. To date, no identification has been made in this organism of the functions or related genes implicated in sphingolipid metabolism. By gathering information from the T. thermophila genome database together with sphingolipid moieties and enzymatic activities reported in other Tetrahymena species, we were able to reconstruct the putative de novo sphingolipid metabolic pathway in T. thermophila. Orthologous genes of 11 enzymatic steps involved in the biosynthesis and degradation pathways were retrieved. No genes related to glycosphingolipid or phosphonosphingolipid headgroup transfer were found, suggesting that both conserved and innovative mechanisms are used in ciliate. The knockout of gene TTHERM_00463850 allowed to identify the gene encoding a putative fatty acid 2-hydroxylase, which is involved in the biosynthesis pathway. Knockout cells have shown several impairments in the sexual stage of conjugation since different mating types of knockout strains failed to form cell pairs and complete the conjugation process. This fatty acid 2-hydroxylase gene is the first gene of a sphingolipid metabolic pathway to be identified in ciliates and have a critical role in their sexual stage.  相似文献   

4.
5.
Sphingolipids are ubiquitous components of eukaryotic cells that regulate various cellular functions. In many cell types, a fraction of sphingolipids contain 2-hydroxy fatty acids, produced by fatty acid 2-hydroxylase (FA2H), as the N-acyl chain of ceramide [hydroxyl fatty acid (hFA)-sphingolipids]. FA2H is highly expressed in myelin-forming cells of the nervous system and in epidermal keratinocytes. While hFA-sphingolipids are thought to enhance the physical stability of specialized membranes produced by these cells, physiological significance of hFA-sphingolipids in many other cell types is unknown. In this study, we report novel roles for FA2H and hFA-sphingolipids in the regulation of the cell cycle. Treatment of D6P2T Schwannoma cells with dibutyryl-cAMP (db-cAMP) induced exit from the cell cycle with concomitant upregulation of FA2H. Partial silencing of FA2H in D6P2T cells resulted in 60–70% reduction of hFA-dihydroceramide and hFA-ceramide, with no effect on nonhydroxy dihydroceramide and ceramide. Under these conditions, db-cAMP no longer induced cell cycle exit, and cells continued to grow and divide. Immunoblot analyses revealed that FA2H silencing prevented db-cAMP-induced upregulation of cyclin-dependent kinase inhibitors p21 and p27. These results provide evidence that FA2H is a negative regulator of the cell cycle and facilitates db-cAMP-induced cell cycle exit in D6P2T cells.  相似文献   

6.
FA 2-hydroxylase (FA2H) is an NAD(P)H-dependent enzyme that initiates FA α oxidation and is also responsible for the biosynthesis of 2-hydroxy FA (2-OH FA)-containing sphingolipids in mammalian cells. The 2-OH FA is chiral due to the asymmetric carbon bearing the hydroxyl group. Our current study performed stereochemistry investigation and showed that FA2H is stereospecific for the production of (R)-enantiomers. FA2H knockdown in adipocytes increases diffusional mobility of raft-associated lipids, leading to reduced GLUT4 protein level, glucose uptake, and lipogenesis. The effects caused by FA2H knockdown were reversed by treatment with exogenous (R)-2-hydroxy palmitic acid, but not with the (S)-enantiomer. Further analysis of sphingolipids demonstrated that the (R)-enantiomer is enriched in hexosylceramide whereas the (S)-enantiomer is preferentially incorporated into ceramide, suggesting that the observed differential effects are in part due to synthesis of sphingolipids containing different 2-OH FA enantiomers. These results may help clarify the mechanisms underlying the recently identified diseases associated with FA2H mutations in humans and may lead to potential pharmaceutical and dietary treatments. This study also provides critical information to help study functions of 2-OH FA enantiomers in FA α oxidation and possibly other sphingolipid-independent pathways.  相似文献   

7.
Bax inhibitor-1 (BI-1) is a widely conserved cytoprotective protein localized in the endoplasmic reticulum (ER) membrane. We identified Arabidopsis cytochrome  b 5 (AtCb5) as an interactor of Arabidopsis BI-1 (AtBI-1) by screening the Arabidopsis cDNA library with the split-ubiquitin yeast two-hybrid (suY2H) system. Cb5 is an electron transfer protein localized mainly in the ER membrane. In addition, a bimolecular fluorescence complementation (BiFC) assay and fluorescence resonance energy transfer (FRET) analysis confirmed that AtBI-1 interacted with AtCb5 in plants. On the other hand, we found that the AtBI-1-mediated suppression of cell death in yeast requires Saccharomyces cerevisiae fatty acid hydroxylase 1 (ScFAH1), which had a Cb5-like domain at the N terminus and interacted with AtBI-1. ScFAH1 is a sphingolipid fatty acid 2-hydroxylase localized in the ER membrane. In contrast, AtFAH1 and AtFAH2, which are functional ScFAH1 homologues in Arabidopsis, had no Cb5-like domain, and instead interacted with AtCb5 in plants. These results suggest that AtBI-1 interacts with AtFAHs via AtCb5 in plant cells. Furthermore, the overexpression of AtBI-1 increased the level of 2-hydroxy fatty acids in Arabidopsis, indicating that AtBI-1 is involved in fatty acid 2-hydroxylation.  相似文献   

8.
2-Hydroxy fatty acids (hFA) are important components of a subset of mammalian sphingolipids. The presence of hFA in sphingolipids is best described in the nervous system, epidermis, and kidney. However, the literature also indicates that various hFA-sphingolipids are present in additional tissues and cell types, as well as in tumors. Biosynthesis of hFA-sphingolipids requires fatty acid 2-hydroyxlase, and degradation of hFA-sphingolipids depends, at least in part, on lysosomal acid ceramidase and the peroxisomal fatty acid α-oxidation pathway. Mutations in the fatty acid 2-hydroxylase gene, FA2H, have been associated with leukodystrophy and spastic paraparesis in humans, underscoring the importance of hFA-sphingolipids in the nervous system. In the epidermis, hFA-ceramides are essential for the permeability barrier function. Physiological function of hFA-sphingolipids in other organs remains largely unknown. Recent evidence indicates that hFA-sphingolipids have specific roles in cell signaling.  相似文献   

9.
10.
The activity of 2',3'-cyclonucleotide-3-phosphohydrolase (CNP) and leucine aminopeptidase (LAP) was studied for the first time in the blood of patients with diseases of the peripheral nervous system. A spectrophotometric method for CNP activity detection was described. The activity absent from the blood of normal subjects was detectable with statistical significance in the patients with the diseases in question. Analogous results were obtained in the animals with an experimental injury to the myelin coat of the peripheral nerves. Study into the activity of LAP in the pathological conditions under consideration revealed no significant deviations. It is emphasized that CNP may transfer to the blood serum from myelin decay foci and that the method described may be used for diagnostic purposes.  相似文献   

11.
In rat germ cells and spermatozoa, sphingomyelin (SM) contains molecular species with nonhydroxy (n) and 2-hydroxy (h) very-long-chain polyunsaturated fatty acids (V), the most abundant being SMs with (n- and h-) 28:4n-6, 30:5n-6, and 32:5n-6 as acyl chains. The aim of this study was to gain information about their thermotropic behavior and interactions with other lipids. After isolation from rat testis, multilamellar and giant unilamellar vesicles from these SMs were examined using fluorescent probes. Only n-32:5 SM and h-32:5 SM displayed a gel-liquid transition temperature (Tt ∼ 21–22°C), the rest remaining in the liquid state in the 5°C–45°C range. The degree of order was larger in bilayers of any of the h-V SMs than in those of their chain-matched n-V SMs. Both, but n-V SM relatively more than h-V SM, decreased the Tt of dimyristoylphosphatidylcholine as their proportion increased in binary phosphatidylcholine:SM liposomes. In contrast to the established ability of 16:0 SM to form lateral cholesterol/SM-rich ordered domains in ternary dioleoylphosphatidylcholine:cholesterol:SM bilayers, neither n-V SM nor h-V SM showed a tendency to do so. Thus, these SMs are in the fluid state and are not involved in this type of domains in spermatozoa at physiological temperatures. However, this state could be altered at the very low temperatures at which these gametes are usually preserved.  相似文献   

12.
13.
14.
Lang I  Feussner I 《Phytochemistry》2007,68(8):1120-1127
The dioxygenation of polyunsaturated fatty acids is mainly catalyzed by members of the lipoxygenase enzyme family in flowering plants and mosses. Lipoxygenase products can be metabolized further and are known as signalling substances that play a role in plant development as well as in plant responses to wounding and pathogen attack. Apart from accumulating data in mammals, flowering and non-flowering plants, information on the relevance of lipid peroxide metabolism in prokaryotic organisms is scarce. Thus we aimed to isolate and analyze lipoxygenases and oxylipin patterns from cyanobacterial origin. DNA isolated from Nostoc punctiforme strain PCC73102 yielded sequences for at least two different lipoxygenases. These have been cloned as cDNAs and named NpLOX1 and NpLOX2. Both proteins were identified as linoleate 13-lipoxygenases by expression in E. coli. NpLOX1 was characterized in more detail: It showed a broad pH optimum ranging from pH 4.5 to pH 8.5 with a maximum at pH 8.0 and alpha-linolenic acid was the preferred substrate. Bacterial extracts contain more 13-lipoxygenase-derived hydroperoxides in wounded than in non-wounded cells with a 30-fold excess of non-esterified over esterified oxylipins. 9-Lipoxygenase-derived derivatives were not detectable. 13-Lipoxygenase-derived hydroperoxides in esterified lipids were present at almost equal amounts compared to non-esterified hydroperoxides in non-wounded cells. These results suggest that 13-lipoxygenases acting on free fatty acids dominate in N. punctiforme strain PCC73102 upon wounding.  相似文献   

15.
Cell wall preparations of the ectohydric forest mosses, Pleurozium schreberi (Brid.) Mitt. and Hylocomium splendens (Hedw.) B. S. G. contain polymerized lipids consisting of hydroxy acids, dicarboxylic acids, fatty acids, fatty alcohols and unidentified components. The finding of polymerized lipids in ectohydric mosses, which have highly permeable cell walls, indicates that the polymers do not form an effective barrier against water and nutrients, at least not in the cell walls of these mosses. The youngest parts of P. schreberi and H. splendens contained 2.0 and 1.6 mg polymerized lipids, respectively, on a dry cell wall weight basis. In the senescent, greyish-green parts of P. schreberi and in the one-year-old shoot tissue of H. splendens the corresponding amounts were about 1.5-fold. In both species the increase was due to increases in hydroxy acids, particularly dihydroxyhexadecanoic acids, dicarboxylic acids, unknown components and, in the case of H. splendens , also an increase in fatty acids. The increase may be related to the maturation of the cell walls. In still older shoot parts the amounts of polymerized lipids decreased in both species, and remained low until final decay of the tissues into small particles. A slight increase in the amount of the polymerized lipid monomers was found in the oldest and most decomposed parts of H. splendens , probably indicating a better resistance to decay than for other cell wall components. These findings are discussed in relation to what is known from the ectohydric peat-forming Sphagnum mosses.  相似文献   

16.
17.
Purified myelin fractions from the central nervous system contain one major myelin-associated glycoprotein and approximately 16 minor glycoproteins. While the genuine association of the major myelin-associated glycoprotein with the oligodendroglial myelin unit is demonstrated, the possibility exists that several of the minor glycoproteins have their origin in contaminating membranes not related to myelin. The major myelin-associated glycoprotein is probably not present in compacted myelin, but immunocytochemical and subfractionation studies indicate that it is confined to the periaxonal and paranodal region of the myelin sheath. In experimental demyelination and multiple sclerosis, the major glycoprotein is the first myelin constituent to be affected. Its localization on the membrane surface where myelin and axolemma are in close contact, and other indirect evidence indicate that the major glycoprotein, and possibly other myelin-associated glycoproteins, could play a role in the process of myelination and myelin maintenance.  相似文献   

18.
2-Hydroxy acids were believed to be absent in algae until this study, in which the analysis of microalgae belonging to Chlorophyta (Chlamydomonas reinhardtii and Chlorella pyrenoidosa), Rhodophyta (Cyanidium caldarium M-8 and Cyanidium caldarium RK-1) and Cyanophyta (Anbaena variabilis, Anacystis nidulans, Oscillatoria species and Phormidium foveolarum) is reported. 2-Hydroxy adds with carbon chain lengths of C16-C26, were found in all the algal samples studied, ranging in concentrations from 4.0 to 320μg/g dry alga. The dominant constituents are 2-hydroxyhexadecanoic, 2-hydroxynonadecanoic, 2-hydroxyhexacosanoic and a branched 2-hydroxy-C19 acid. The distribution patterns of the acids differed significantly among the algal samples. Hence 2-hydroxy acids may be useful for the classification of algal species as well as being an important source of 2-hydroxy acids in the natural environment.  相似文献   

19.
Three major glycosphingolipids (tentatively designated IGL-1, 2, and 3) were isolated from the intestine of red sea bream (Pagrus major) and were subjected to a TLC-overlay assay with (35)S-labeled Vibrio trachuri which causes vibriosis of fish. The bacteria adhered to IGL-2, which was determined to be a GM4 ganglioside (NeuAcalpha2-3Galbeta1-ceramide). The fatty acid portion of IGL-2 was composed of 2-hydroxy C22:0, C24:0, and C24:1, in addition to the non-hydroxy C16:0 and C18:0, while the sphingoid base was composed exclusively of sphingenine (d18:1). Among glycosphingolipids tested, V. trachuri adhered to GM4 the most strongly followed by adherence to GM3 and GalCer, but the bacteria did not adhere to GM1a, GM2, LacCer, or GlcCer. V. trachuri was found to aggregate with the erythrocytes coated with GM4, but not with those coated with GM1a or GM2, thus indicating that specific adhesion occurs on intact cells. Interestingly, the dynamics for adhesion of V. trachuri to glycosphingolipids was defined by the structure of not only the sugar moiety but also the ceramide moiety, since the bacteria adhered to GM4 which contained 2-hydroxy fatty acids much more strongly than to that which contained non-hydroxy fatty acids.  相似文献   

20.
FSP27 [cell death-inducing DFFA-like effector c (CIDEC) in humans] is a protein associated with lipid droplets that downregulates the fatty acid oxidation (FAO) rate when it is overexpressed. However, little is known about its physiological role in liver. Here, we show that fasting regulates liver expression of Fsp27 in a time-dependent manner. Thus, during the initial stages of fasting, a maximal induction of 800-fold was achieved, whereas during the later phase of fasting, Fsp27 expression decreased. The early response to fasting can be explained by a canonical PKA-CREB-CRTC2 signaling pathway because: i) CIDEC expression was induced by forskolin, ii) Fsp27 promoter activity was increased by CREB, and iii) Fsp27 expression was upregulated in the liver of Sirt1 knockout animals. Interestingly, pharmacological (etomoxir) or genetic (Hmgcs2 interference) inhibition of the FAO rate increases the in vivo expression of Fsp27 during fasting. Similarly, CIDEC expression was upregulated in HepG2 cells by either etomoxir or HMGCS2 interference. Our data indicate that there is a kinetic mechanism of autoregulation between short- and long-term fasting, by which free FAs delivered to the liver during early fasting are accumulated/exported by FSP27/CIDEC, whereas over longer periods of fasting, they are degraded in the mitochondria through the carnitine palmitoyl transferase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号