首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfection of Chinese hamster ovary (CHO) cells with human DNA has been shown in several laboratories to produce clones which stably express the DNA-repair protein, O6-methylguanine-DNA methyltransferase (MGMT), that is lacking in the parent cell lines (Mex- phenotype). We have investigated the genetic origin of the MGMT in a number of such MGMT-positive (Mex+) clones by using human MGMT cDNA and anti-human MGMT antibodies as probes. None of the five independently isolated Mex+ lines has human MGMT gene sequences. Immunoblot analysis confirmed the absence of the human protein in the extracts of these cells. The MGMT mRNA in the lines that express low levels of MGMT (0.6-1.4 x 10(4) molecules/cell) is of the same size (1.1 kb) as that present in hamster liver. One cell line, GC-1, with a much higher level of MGMT (4 x 10(4) molecules/cell) has two MGMT mRNAs, a major species of 1.3 kb and a minor species of 1.8 kb. It has also two MGMT polypeptides (32 and 28 kDa), both of which are larger than the 25 kDa MGMT present in hamster liver and other Mex+ transfectants. These results indicate that the MGMT in all Mex+ CHO cell clones is encoded by the endogenous gene. While spontaneous activation of the MGMT gene cannot be ruled out in the Mex+ cell clones, the intervention of human DNA sequences may be responsible for activation of the endogenous gene in the GC-1 line.  相似文献   

2.
Chinese hamster ovary (CHO-9) and HeLa MR cells lack detectable amounts of O6-alkylguanine DNA alkyltransferase (phenotypically Mex-) and are hypersensitive to the toxic effect of N-hydroxyethyl-N-chloroethylnitrosourea (HeCNU), as compared to Mex+ derivatives. Microinjection of size-fractionated polyA+ mRNA extracted from HeLa S3 (Mex+) into CHO-9 and HeLa MR cells, or from ataxia telangiectasia (Mex+) into HeLa MR cells, gave rise to an increase in survival following treatment with toxic doses of HeCNU. Transient complementation of the Mex- phenotype was achieved with an RNA population 0.8-1 kb in size.  相似文献   

3.
O6-Methylguanine-DNA methyltransferase (MGMT) is decisively involved in protecting mammalian cells against genotoxic effects of alkylating carcinogens. We analysed regulation of MGMT expression after exposing rat hepatoma H4IIE cells to various 'stress' factors. Treatments that damage DNA such as alkylation, hydrogen peroxide, ultraviolet or X-ray exposure, as well as restriction enzymes introduced into cells by electroporation or arrest of replication by hydroxyurea significantly induced MGMT mRNA (2.5 to 5-fold). Slight induction (up to 2.5-fold) was observed after heat shock or cadmium/zinc treatment. No or only a very weak induction (less than 1.5-fold) was observed after treatment with 6-thioguanine, 5-azacytidine, transfection of methylated DNA, depletion of MGMT by feeding with O6-methylguanine or O6-benzylguanine, serum starvation and feeding of starved cells, cAMP, TPA and dexamethasone treatment. Inhibitors of protein kinases, H8 and H9, induced MGMT mRNA. On the other hand, an inhibitor of phosphatases (sodium vanadate) prevented induction of MGMT by N-methyl-N'-nitro-N-nitrosoguanidine. The data indicate that DNA breaks are an ultimate signal for MGMT mRNA induction and that protein phosphorylation is involved in regulating MGMT expression.  相似文献   

4.
5.
6.
7.
8.
Instability of Mex- phenotype in human lymphoblastoid cell lines   总被引:1,自引:0,他引:1  
Three lymphoblastoid cell lines (LCLs) had extremely low activities of O6-alkylguanine-DNA alkyltransferase (O6-AGT), and were classified as Mex-. They were highly sensitive to cell killing by 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitrosoure a hydrochloride (ACNU), whereas NMO2, a Mex+ LCL with a high O6-AGT activity, was resistant to the agent. Small fractions of these Mex- LCLs survived the treatment with 10 micrograms/ml of ACNU for 24 h, and the surviving cells were found to be resistant to subsequent treatments with the agent. In addition, they contained O6-AGT activities comparable to that of NMO2 and were therefore regarded as Mex+. These results suggest that the Mex- phenotype in LCLs is unstable.  相似文献   

9.
10.
Summary An overview is presented on strategies of cloning mammalian DNA repair genes. Complementation of human and rodent repair defects and mutagen hypersensitivities by chromosome and DNA mediated gene transfer and mRNA microinjection is described, and the features of the cloned human DNA repair genes are summarized. It is shown that transfection of repair deficient cell lines with cloned bacterial and human genes may give rise to protection from the genotoxic effects of mutagens.Abbreviations MGMT O6-methylguanine-DNA methyltransferase - MNNG N-methyl-N-nitro-N-nitrosoguanidine - HeCNU N-hydroxyethyl-N-chloroethylnitrosourea - MMC mitomycin C - MPA mycophenolic acid - ERCC excision-repair cross-complementing rodent UV-complementation group - UV ultraviolet light - XP xeroderma pigmentosum - CHO Chinese hamster ovary Dedicated to Prof. Dr. U. Hagen on the occasion of his 65th birthdayExtended version of an oral presentation given at the workshop Molecular Radiation Biology. German Section of the DNA Repair Network, München-Neuherberg, 21.–23.3.90  相似文献   

11.
Mismatch binding proteins and tolerance to alkylating agents in human cells   总被引:1,自引:0,他引:1  
The Mex- (Mer-) phenotype of human cells is characterised by a sensitivity to agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-methyl-N-nitrosourea (MNU). The hypersensitivity of Mex- cells is a consequence of their failure to express the DNA-repair enzyme m6-Gua-DNA methyltransferase. Resistance to MNNG and MNU may be acquired by Mex- cells either by reexpression of a methyltransferase function or by an ill-defined process of tolerance in which the cytotoxic potential of m6-Gua is circumvented without the altered base being removed from DNA. It has been suggested that tolerance might involve an altered mismatch correcting function. We have investigated proteins which recognise and bind specifically to DNA fragments containing single-base mismatches. Cell-free extracts of a Burkitt's lymphoma cell line (Raji) contain two such mismatch binding activities. Neither protein appears to have a high affinity for m6-Gua-containing base pairs. The data indicate that m6-Gua-containing base pairs might be poor substrates for mismatch repair processes in human cells.  相似文献   

12.
13.
14.
15.
The aim of our study was to investigate the effect of recombinant human cytokine EMAP II (endothelial monocyte-activating polypeptide II) on the expression of MGMT gene, encoding repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) in human cell cultures. The influence of EMAP II on cell proliferation was performed using routine MTT assay. Identification of MGMT in cell extracts was performed using Western blot analysis. We used cell lines: A102 (fibroblasts), CB-1 (umbilical cord blood stromal cells), 4BL6 (cells derived from peripheral blood). It was shown that cytokine EMAP II caused induction of MGMT expression in studied human cell lines. There was a decrease in cell number at high concentrations of this cytokine. It was found that the presence of cytokine EMAP II in serum-free growth medium leads to increasing of repair enzyme MGMT expression level in human cells in vitro.  相似文献   

16.
The expressions of mRNA for serine dehydratase in H4IIE, HTC, and HepG2 hepatoma cells were investigated. Of the two types of mRNA transcribed from the single copy of the rat serine dehydratase gene, expression of only that encoding 35 kDa serine dehydratase is repressed in these cells. The other type coding the 8.9 kDa truncated translation product is expressed at a similar level to that in hepatocytes in primary culture and is not under hormonal control.  相似文献   

17.
18.
Resistance of mammalian cells to S(N)1-type methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) generally arises through increased expression of methylguanine methyltransferase (MGMT), which reverts the cytotoxic O(6)-methylguanine ((Me)G) to guanine, or through inactivation of the mismatch repair (MMR) system, which triggers cell death through aberrant processing of (Me)G/T mispairs generated during DNA replication when MGMT capacity is exceeded. Given that MMR and (Me)G-detoxifying proteins are functionally conserved through evolution, and that MMR-deficient Escherichia coli dam(-) strains are also resistant to MNNG, the finding that MMR status did not affect the sensitivity of Saccharomyces cerevisiae to MNNG was unexpected. Because (Me)G residues in DNA trigger homologous recombination (HR), we wondered whether the efficient HR in S. cerevisiae might alleviate the cytotoxic effects of (Me)G processing. We now show that HR inactivation sensitizes S. cerevisiae to MNNG and that, as in human cells, defects in the MMR genes MLH1 and MSH2 rescue this sensitivity. Inactivation of the EXO1 gene, which encodes the only exonuclease implicated in MMR to date, failed to rescue the hypersensitivity, which implies that scExo1 is not involved in the processing of (Me)G residues by the S. cerevisiae MMR system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号