首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
KK/San is a mutant mouse strain established in our laboratory from KK obese mice. KK/San mice show low plasma lipid levels compared with wild-type KK mice despite showing signs of hyperglycemia and hyperinsulinemia. Recently, we identified a mutation in the gene encoding angiopoietin-like protein 3 (Angptl3) in KK/San mice, and injection of adenoviruses encoding Angptl3 or recombinant ANGPTL3 protein to mutant KK/San mice raised plasma lipid levels. To elucidate the regulatory mechanism of ANGPTL3 on lipid metabolism, we focused on the metabolic pathways of triglyceride in the present study. Overexpression of Angptl3 in KK/San mice resulted in a marked increase of triglyceride-enriched very low density lipoprotein (VLDL). In vivo studies using Triton WR1339 revealed that there is no significant difference between mutant and wild-type KK mice in the hepatic VLDL triglyceride secretion rate. However, turnover studies using radiolabeled VLDL revealed that the clearance of (3)H-triglyceride-labeled VLDL was significantly enhanced in KK/San mice, whereas the clearance of (125)I-labeled VLDL was only slightly enhanced. In vitro analysis of recombinant protein revealed that ANGPTL3 directly inhibits LPL activity. These data strongly support the hypothesis that ANGPTL3 is a new class of lipid metabolism modulator, which regulates VLDL triglyceride levels through the inhibition of LPL activity.  相似文献   

2.
Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling.  相似文献   

3.
On-line detection of serum proteins is of clinical relevance, in detecting leaks and biofouling in hemofiltration equipment, biofilm growth on prosthetic devices, or hemolysis within a prosthetic or therapeutic device. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to detect and analyze micromolar concentrations of four globular proteins of clinical importance. CV testing showed that identification and quantification of each of these proteins was possible through analysis of current changes at specific potentials. Preliminary CV studies into the contamination of Bovine Serum Albumin with a microgram amount of one of the other three proteins illustrated that direct detection of the contaminant protein was possible. The analysis of the EIS data demonstrated that with increase in relative concentration of proteins, the amount of electroactive proteins adsorption at the interface increases, leading to increase in surface charge density and capacitance, especially for lower molecular weight proteins. The impedance data was used to determine the values of Gibbs adsorption energy, adsorption coefficients for the four proteins, and develop an equivalent circuit model for the protein-containing solutions.  相似文献   

4.
Capillary blood sampling has been identified as a potentially suitable technique for use in diagnostic testing of the full blood count (FBC) at the point-of-care (POC), for which a recent need has been highlighted. In this study we assess the accuracy of capillary blood counts and evaluate the potential of a miniaturized cytometer developed for POC testing. Differential leukocyte counts in the normal clinical range from fingerprick (capillary) and venous blood samples were measured and compared using a standard hematology analyzer. The accuracy of our novel microfluidic impedance cytometer (MIC) was then tested by comparing same-site measurements to those obtained with the standard analyzer. The concordance between measurements of fingerprick and venous blood samples using the standard hematology analyzer was high, with no clinically relevant differences observed between the mean differential leukocyte counts. Concordance data between the MIC and the standard analyzer on same-site measurements presented significantly lower leukocyte counts determined by the MIC. This systematic undercount was consistent across the measured (normal) concentration range, suggesting that an internal correction factor could be applied. Differential leukocyte counts obtained from fingerprick samples accurately reflect those from venous blood, which confirms the potential of capillary blood sampling for POC testing of the FBC. Furthermore, the MIC device demonstrated here presents a realistic technology for the future development of FBC and related tests for use at the site of patient care.  相似文献   

5.
Noninsulin-dependent diabetic KK mice, aged 90-100 days, with hyperinsulinemia and insulin resistance were treated with either metformin (N = 13) or water (control, N = 10) orally at a concentration of 50 mg/kg twice daily for 28 weeks. Age-matched nondiabetic Swiss Webster (SW) mice were also similarly treated. Liver and skeletal muscle glycogen synthase and phosphorylase enzymes were determined in all groups of mice. Both enzymes were significantly lower in control KK than in control SW mice. Metformin did not influence either of these enzymes in nondiabetic SW mice. However, it significantly increased the active form of glycogen synthase (a form) in both the liver and muscle of KK mice. Metformin also increased the active form of phosphorylase (a form) in the liver but not in the muscle of these mice. Hepatic glycogen content was similar in both control and metformin-treated KK mice. However, the muscle glycogen content was significantly higher in metformin-treated than in control KK mice. These data suggest that metformin preferentially stimulates glycogen synthesis in skeletal muscle, and this seems to be responsible for the observed improvement in fasting glucose and glucose response to an oral glucose load in KK mice.  相似文献   

6.
Mun S  Baek Y  Kim C  Lee YW  Yoon J 《Biofouling》2012,28(6):627-633
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO(2)) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO(2) (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO(2) treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

7.
Abstract

Biofouling accumulation on ships’ submerged surfaces typically occurs during stationary periods that render surfaces more susceptible to colonization than when underway. As a result, stationary periods longer than typical port residence times (hours to days), often referred to as lay-ups, can have deleterious effects on hull maintenance strategies, which aim to minimize biofouling impacts on ship operations and the likelihood of invasive species transfers. This experimental study tested the effects of different lay-up durations on the magnitude of biofouling, before and after exposure to flow, using fouling panels with three coating treatments (antifouling, foul-release, and controls), at two sites, and a portable field flume to simulate voyage sheer forces. Control panels subjected to extended stationary durations (28-, 45- and 60-days) had significantly higher biofouling cover and there was a 13- to 25-fold difference in biofouling accumulation between 10-days and 28-days of static immersion. Prior to flume exposure, the antifouling coating prevented biofouling accumulation almost entirely at one site and kept it below 20% at the other. Foul-release coatings also proved effective, especially after flume exposure, which reduced biofouling at one site from >52% to <6% cover (on average). The experimental approach was beneficial for co-locating panel deployments and flume processing using a consistent (standardized) flow regime on large panels across sites of differing conditions and biofouling assemblages. While lay-ups of commercial vessels are relatively common, inevitable, and unavoidable, it is important to develop a better understanding of the magnitude of their effects on biofouling of ships’ submerged surfaces and to develop workable post-lay-up approaches to manage and respond to elevated biofouling accumulation that may result.  相似文献   

8.
The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.  相似文献   

9.
Microbiologically influenced corrosion (MIC) is a major problem in various industries such as oil and gas, and water utilities. Billions of dollars are lost to microbiologically influenced corrosion (MIC) each year in the US. The key to MIC control is biofilm mitigation. Sulfate-reducing bacteria (SRB) are often the culprits. They are also involved in souring and biofouling. SRB biofilms are notoriously difficult to eradicate. Due to environmental concerns and increasing costs, better biocide treatment strategies are desired. Recent studies suggested that D: -tyrosine and some other D: -amino acids may signal biofilm dispersal. Experimental results in this work indicated that D: -tyrosine is an effective biocide enhancer for tetrakis hydroxymethyl phosphonium sulfate (THPS) that is a green biocide. Desulfovibrio vulgaris (ATCC 7757) was used in biofilm prevention and biofilm removal tests. It was found that 100?ppm D: -tyrosine alone and 50?ppm THPS alone were both ineffective against the SRB biofilm. However, when 1?ppm D: -tyrosine was combined with 50?ppm THPS, the synergy between the two chemicals successfully prevented the establishment of the SRB biofilm on C1018 mild steel coupon surfaces in batch treatment tests. It also eradicated established SRB biofilms from coupon surfaces in both 1 and 3-h shock treatment tests.  相似文献   

10.
Microbiologically influenced corrosion: looking to the future.   总被引:5,自引:0,他引:5  
This review discusses the state-of-the-art of research into biocorrosion and the biofouling of metals and alloys of industrial usage. The key concepts needed to understand the main effects of microorganisms on metal decay, and current trends in monitoring and control strategies to mitigate the deleterious effects of biocorrosion and biofouling are also described. Several relevant cases of biocorrosion studied by our research group are provided as examples: (i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; (ii) sulfate-reducing bacteria (SRB)-induced corrosion of steel; (iii) biocorrosion and biofouling interactions in the marine environment; (iv) monitoring strategies for assessing biocorrosion in industrial water systems; (v) microbial inhibition of corrosion; (vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. Future prospects in the field are described with respect to the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopic techniques for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis).  相似文献   

11.
Two triorganotin(IV) carboxylates [nBu3SnOL]n (KK1) and [Ph3SnOL]n (KK2) have been prepared by the reactions of (E)-3-(4-(diphenylamino)phenyl)acrylic acid (HL) with n(Bu3Sn)2O and Ph3Sn(OH), respectively. Complexes KK1 and KK2 have been structurally characterized by IR, elemental analysis and X-ray crystallography, confirming that both complexes possess infinite 1D chain structures. It’s exciting to discover that KK1 and KK2 exhibit strong solid-state luminescence emission while the HL almost quenches. Furthermore, both complexes were assayed for in vitro antibacterial activity against two Gram-positive bacterial strains (Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538) and two Gram-negative bacterial strains (Pseudomonas aeruginosa ATCC 13525 and Escherichia coli ATCC 35218) by MTT method. Complex KK2 exhibited powerful antibacterial activities against S. aureus with MIC value of 0.78 μg/mL, which was superior to the positive controls penicillin G. On the basis of the biological results, structure-activity relationships were discussed.  相似文献   

12.
BackgroundDetermining Schistosoma mansoni infection rate and intensity is challenging due to the low sensitivity of the Kato-Katz (KK) test that underestimates the true disease prevalence. Circulating cathodic antigen (CCA) excreted in urine is constantly produced by adult worms and has been used as the basis of a simple, non-invasive point of care test (POC-CCA) for Schistosoma mansoni infections. Although the abundance of CCA in urine is proportional to worm burden, the POC-CCA test is marketed as a qualitative test, making it difficult to investigate the wide range of infection intensities. This study was designed to compare the prevalence and intensity of S. mansoni by KK and POC-CCA and quantify, on fresh and frozen (<-20°C) urine samples, CCA using the visual scores and the ESEquant LR3 reader.MethodologyStool and urine samples were collected from 759 school-aged children. The prevalence and intensity of S. mansoni were determined using KK and POC-CCA. The degree of the positivity of POC-CCA was estimated by quantifying CCA on fresh and frozen urine samples using visual scores and strip reader. The prevalence, the infection intensity as well the relative amounts of CCA were compared.ResultsThe S. mansoni infection rates inferred from POC-CCA and KK were 40.7% and 9.4% respectively. Good correlations were observed between infection intensities recorded by; i) the reader and visual scoring system on fresh (Rho = 0.89) and frozen samples (Rho = 0.97), ii) the reader on fresh urine samples and KK (epg) (Rho = 0.44). Nevertheless, 238 POC-CCA positive children were negative for KK, and sixteen of them had high levels of CCA. The correlation between results from the reader on fresh and frozen samples was good (Rho = 0.85). On frozen samples, CCA was not detected in 55 samples that were positive in fresh urine samples.ConclusionThis study confirmed the low sensitivity of KK and the high capacity of POC-CCA to provide reliable data on the prevalence and intensity of S. mansoni infections. The lateral flow reader enabled accurate quantification of CCA under field conditions on fresh and frozen urine samples with less time and effort than KK.  相似文献   

13.
A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL) significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 microM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate O-acetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes.  相似文献   

14.
【目的】对污损生物膜细菌YT1305-1进行菌种鉴定;研究其作为污损生物膜优势菌之一的代谢产物。【方法】通过16S rRNA基因序列分析,结合系统进化树和细菌生理生化实验对菌种进行鉴定,通过硅胶柱层析分离方法和核磁共振检测技术分析其代谢物的化学成分。【结果】发现生物膜中存在明显的优势菌株,假交替单胞菌属为优势菌属之一。16S rRNA序列比对分析表明Pseudoalteromonas issachenkonii为优势菌种之一,将目标菌种命名为Pseudoalteromonas issachenkonii YT1305-1,对其代谢物化学成分进行分析,共得到10个化合物,其中包括5个二酮哌嗪(DKPs)类信号分子,环(甘氨酸-丙氨酸)(1)、环(脯氨酸-甘氨酸)(2)、环(脯氨酸-酪氨酸)(3)、环(4-羟基-脯氨酸-亮氨酸)(4)和环(4-羟基-脯氨酸-丙氨酸)(5),以及尿嘧啶(6)、胸腺嘧啶(7)、胸腺嘧啶脱氧核苷(8)、己二酸二(2-乙基己)酯(9)和邻苯二甲酸二(2-乙基己)酯(10)。【结论】污损生物膜中存在明显的优势菌,其中之一为P.issachenkonii YT1305-1,在其代谢产物中发现了疑似信号分子的物质DKPs,有研究表明该物质能调控生物膜的形成,进而影响生物污损的形成,为探究生物污损现象奠定了物质基础。  相似文献   

15.
To investigate the production of cellulases and hemicellulases from Aspergillus niger KK2, solid state fermentation (SSF) was performed by using different ratios of rice straw and wheat bran. When A. niger KK2 was grown on rice straw alone as a solid support in SSF, the maximum FPase activity was 19.5 IU g(-1) in 4 days. Also, CMCase (129 IU g(-1)), beta-glucosidase (100 IU g(-1)), xylanase (5070 IU g(-1)) and beta-xylosidase (193 IU g(-1)) activities were concurrently obtained after 5-6 days of fermentation. The higher enzyme activities produced by A. niger KK2 is a significant advantage from the viewpoint of practical saccharification reaction. Cellulases and hemicellulases produced by A. niger KK2 might be applied to pulp and paper industry, feed industry and chemical industry.  相似文献   

16.
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO2) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO2 (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO2 treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

17.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   

18.
AIMS: To generate continuous minimum inhibitory concentration (MIC) data that describes the discrete nature of experimentally derived population MIC data. METHODS AND RESULTS: A logistic model was fitted to experimentally derived MIC population cumulative distributions from clinical isolates of Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae and Staphylococcus aureus (European Committee on Antimicrobial Susceptibility Testing, BSAC and MYSTIC population susceptibility databases). From the model continuous distributions of population susceptibility were generated. The experimentally observed population distributions based on discrete MIC could be reproduced from this underlying continuous distribution. Monte Carlo (MC) simulation was used to confirm findings. Where the discrete experimental data contained few or no isolates with MIC greater or less than the antimicrobial concentration range tested, the true mean MIC was a factor of 0.707 times that normally reported and may be of little clinical significance. Where data contained isolates beyond the range of concentration used, the true MIC was dependent on the SD and the number of isolates and could be clinically significant. Subpopulations of differing susceptibilities could be modelled successfully using a modified logistic equation: this allows a more accurate examination of the data from these databases. CONCLUSIONS: The mean MIC and SD of population data currently reported are incorrect as the method of obtaining such parameters relies on normally distributed data which current MIC population data are not. SIGNIFICANCE AND IMPACT OF THE STUDY: Obtaining the distribution parameters from the underlying continuous distribution of MIC can be carried out using a simple logistic equation. MC simulation using these values allows easy visualization of the discrete data. The analyses of subpopulations within the data should increase the usefulness of horizontal studies.  相似文献   

19.
Our previous work identified a genetic mutation in the gene encoding angiopoietin-like protein 3 (Angptl3) in KK/Snk mice (previously KK/San), a mutant strain of KK obese mice. KK/Snk had significantly lower plasma triglyceride and free fatty acid (FFA) than KK mice. Human ANGPTL3 treatment increased both plasma triglyceride and FFA. ANGPTL3 inhibited the activity of lipoprotein lipase, which accounted for the increase of plasma triglyceride. The mechanism how ANGPTL3 affects plasma FFA has not been known. The current study reveals that ANGPTL3 targets on adipose cells and induces lipolysis. Both plasma FFA and glycerol decreased in KK/Snk and increased by the treatment of human ANGPTL3. Specific bindings of ANGPTL3 to adipose cells were shown using fluorescence-labeled protein visually and 125I-labeled protein by the binding analysis. Furthermore, ANGPTL3 activated the lipolysis to stimulate the release of FFA and glycerol from adipocytes. We conclude that ANGPTL3 is a liver-derived lipolytic factor targeting on adipocyte.  相似文献   

20.

Background

Microscopy-based identification of eggs in stool offers simple, reliable and economical options for assessing the prevalence and intensity of hookworm infections, and for monitoring the success of helminth control programs. This study was conducted to evaluate and compare the diagnostic parameters of the Kato-Katz (KK) and simple sodium nitrate flotation technique (SNF) in terms of detection and quantification of hookworm eggs, with PCR as an additional reference test in stool, collected as part of a baseline cross-sectional study in Cambodia.

Methods/Principle Findings

Fecal samples collected from 205 people in Dong village, Rovieng district, Preah Vihear province, Cambodia were subjected to KK, SNF and PCR for the detection (and in case of microscopy-based methods, quantification) of hookworm eggs in stool. The prevalence of hookworm detected using a combination of three techniques (gold standard) was 61.0%. PCR displayed a highest sensitivity for hookworm detection (92.0%) followed by SNF (44.0%) and quadruple KK smears (36.0%) compared to the gold standard. The overall eggs per gram feces from SNF tended to be higher than for quadruple KK and the SNF proved superior for detecting low egg burdens.

Conclusion/Significance

As a reference, PCR demonstrated the higher sensitivity compared to SNF and the quadruple KK method for detection of hookworm in human stool. For microscopic-based quantification, a single SNF proved superior to the quadruple KK for the detection of hookworm eggs in stool, in particular for low egg burdens. In addition, the SNF is cost-effective and easily accessible in resource poor countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号