首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Thermophilic degradation of sugar beet pulp was studied in batch cultures at 55°C by different associations of bacteria, includingClostridium thermocellum,Methanobacterium sp. andMethanosarcina MP.C. thermocellum produced acetate, succinate, methanol, ethanol, H2 and CO2. The coculture ofC. thermocellum andMethanobacterium sp. produced trace amounts of ethanol and succinate; acetate concentration was about three times higher than in theC. thermocellum monoculture. The association of this coculture withMethanosarcina MP produced 5.5 mmol CH4/g dry weight sugar beet pulp.  相似文献   

2.
Methanogenesis from ethanol by defined mixed continuous cultures was studied. Under sulfate-free conditions, a Desulfovibrio strain was used as the ethanol-degrading species producing acetic acid and hydrogen. In a two-membered mutualistic coculture, the hydrogen was converted to methane by a Methanobacterium sp. and pH was maintained at neutrality by the addition of alkali. Introduction of a third species, the acetate-utilizing Methanosarcina mazei, obviated the need for external pH control. Methanogenesis by the co-and triculture was studied at various dilution rates in the steady state. The mutualistic coculture performed like a composite single species, as predicted from the theory of mutualistic interactions. Coupling between the mutualistic coculture and the acetate-utilizing methanogen was less tight. Increasing the dilution rate destabilized the triculture; at low dilution rates, instability was soon recovered, but at higher dilution rates imbalance between the rates of production and removal of acetic acid led to a drop in pH. Flocs formed in the triculture. An annulus of the Methanobacterium sp. and Desulfovibrio sp. was retained around the Methanosarcina sp. by strands of material probably derived from the Methanosarcina sp.  相似文献   

3.
Thermophilic degradation of pectin was studied in batch cultures at 55°C by different associations of anaerobic bacteria, includingClostridium thermocellum, Methanobacterium sp., andMethanosarcina sp.Clostridium thermocellum alone produced large amounts of methanol along with some isopropanol and H2. The inoculation ofMethanobacterium sp. in the culture did not affect the metabolism ofC. thermocellum; this demonstrates the absence of interspecies hydrogen transfer. In the presence of the methylotrophicMethanosarcina sp., methanol was reduced to methane without effect on pectin hydrolysis; a small amount of the H2 produced was also used to reduce methanol.  相似文献   

4.
Thermoanaerobacter brockiifermented serine to acetate and ethanol. It oxidized leucine to isovalerate, isoleucine to 2-methylbutyrate, and valine to isobutyrate only in the presence of thiosulfate, or when co-cultured withMethanobacteriumsp. This oxidative deamination was rendered thermodynamically possible by the ability ofT. brockiito reduce thiosulfate to sulfide or the transfer of reducing equivalents to the hydrogenotrophic methanogen. The results suggest thatT. brockiimay be of ecological significance in thermal environments in the turnover of amino acids, especially with thiosulfate or H2-utilizing methanogens are present.  相似文献   

5.
Syntrophic degradation of normal- and branched-chain fatty acids with 4 to 9 carbons was investigated with a mesophilic syntrophic isobutyrate-butyrate-degrading triculture consisting of the non-spore-forming, syntrophic, fatty acid-degrading, gram-positive rod-shaped strain IB, Methanobacterium formicicum T1N, and Methanosarcina mazei T18. This triculture converted butyrate and isobutyrate to methane and converted valerate and 2-methylbutyrate to propionate and methane. This triculture also degraded caproate, 4-methylvalerate, heptanoate, 2-methylhexanoate, caprylate, and pelargoate. During the syntrophic conversion of isobutyrate and butyrate, a reversible isomerization between butyrate and isobutyrate occurred; isobutyrate and butyrate were isomerized to the other isomeric form to reach nearly equal concentrations and then their concentrations decreased at the same rates. Butyrate was an intermediate of syntrophic isobutyrate degradation. When butyrate was degraded in the presence of propionate, 2-methylbutyrate was synthesized from propionate and isobutyrate formed from butyrate. During the syntrophic degradation of valerate, isobutyrate, butyrate, and 2-methylbutyrate were formed and then degraded. During syntrophic degradation of 2-methylbutyrate, isobutyrate and butyrate were formed and then degraded.  相似文献   

6.
Two types of mesophilic methanogenic granules (R- and F-granules) were developed on different synthetic feeds containing acetate, propionate and butyrate as major carbon sources and their metabolic properties were characterized. The metabolic activities of granules on acetate, formate and H2-CO2 were related to the feed composition used for their development. These granules performed a reversible reaction between H2 production from formate and formate synthesis from H2 plus bicarbonate. Both types of granules exhibited high activity on normal and branched volatile fatty acids with three to five carbons and low activity on ethanol and glucose. The granules performed a reversible isomerization between isobutyrate and butyrate during butyrate or isobutyrate degradation. Valerate and 2-methylbutyrate were produced and consumed during propionate-butyrate degradation. The respective apparent K m (mm) for various substrates in disrupted R- and F-granules was: acetate, 0.43 and 0.41; propionate, 0.056 and 0.038; butyrate, 0.15 and 0.19; isobutyrate, 0.12 and 0.19; valerate, 0.15 and 0.098. Both granules had an optimum temperature range from 40 to 50° C for H2-CO2 and formate utilization and 40° C for acetate, propionate and butyrate utilization and a similar optimum pH. Correspondence to: J. G. Zeikus  相似文献   

7.
We previously described a thermophilic (60°C), syntrophic, two-membered culture which converted acetate to methane via a two-step mechanism in which acetate was oxidized to H2 and CO2. While the hydrogenotrophic methanogen Methanobacterium sp. strain THF in the biculture was readily isolated, we were unable to find a substrate that was suitable for isolation of the acetate-oxidizing member of the biculture. In this study, we found that the biculture grew on ethylene glycol, and an acetate-oxidizing, rod-shaped bacterium (AOR) was isolated from the biculture by dilution into medium containing ethylene glycol as the growth substrate. When the axenic culture of the AOR was recombined with a pure culture of Methanobacterium sp. strain THF, the reconstituted biculture grew on acetate and converted it to CH4. The AOR used ethylene glycol, 1,2-propanediol, formate, pyruvate, glycine-betaine, and H2-CO2 as growth substrates. Acetate was the major fermentation product detected from these substrates, except for 1,2-propanediol, which was converted to 1-propanol and propionate. N,N-Dimethylglycine was also formed from glycine-betaine. Acetate was formed in stoichiometric amounts during growth on H2-CO2, demonstrating that the AOR is an acetogen. This reaction, which was carried out by the pure culture of the AOR in the presence of high partial pressures of H2, was the reverse of the acetate oxidation reaction carried out by the AOR when hydrogen partial pressures were kept low by coculturing it with Methanobacterium sp. strain THF. The DNA base composition of the AOR was 47 mol% guanine plus cytosine, and no cytochromes were detected.  相似文献   

8.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸<丁酸<丙酸;最大比产甲烷速率和底物转化效率依次是丙酸<乙酸<丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobact...  相似文献   

9.
Isomerization of butyrate and isobutyrate was investigated with the recently isolated strictly anaerobic bacterium strain WoG13 which ferments glutarate to butyrate, isobutyrate, CO2, and small amounts of acetate. Dense cell suspensions converted butyrate to isobutyrate and isobutyrate to butyrate. 13C-nuclear magnetic resonance experiments proved that this isomerization was accomplished by migration of the carboxyl group to the adjacent carbon atom. In cell extracts, both butyrate and isobutyrate were activated to their coenzyme A (CoA) esters by acyl-CoA:acetate CoA-transferases. The reciprocal rearrangement of butyryl-CoA and isobutyryl-CoA was catalyzed by a butyryl-CoA:isobutyryl-CoA mutase which depended strictly on the presence of coenzyme B12. Isobutyrate was completely degraded via butyrate to acetate and methane by a defined triculture of strain WoG13, Syntrophomonas wolfei, and Methanospirillum hungatei.  相似文献   

10.
Summary Scanning electron microphotographs from the biofilm of a pilot scale anaerobic fluid-ized-bed reactor fed with acetate, propionate, and butyrate as carbon sources showed a predominance of filamentous organisms resembling Methanothrix sp. which could be isolated as an al-most pure culture as well as a Methanosarcina strain. Three syntrophic cultures, enriched in the medium of Boone and Xun, contained four or five microscopically distinguishable microorganisms, among them Methanospirillum sp., Methanothrix sp., Methanosarcina sp., and rods of acetogenic bacteria degrading propionate or butyrate effectively.  相似文献   

11.
A dual approach consisting of cultivation and molecular retrieval of partial archaeal 16S rRNA genes was carried out to characterize the diversity and structure of the methanogenic community inhabiting the anoxic bulk soil of flooded rice microcosms. The molecular approach identified four groups of known methanogens. Three environmental sequences clustered with Methanobacterium bryantii and Methanobacterium formicicum, six were closely related but not identical to those of strains of Methanosaeta concilii, two grouped with members of the genus Methanosarcina, and two were related to the methanogenic endosymbiont of Plagiopyla nasuta. The cultivation approach via most-probable-number counts with a subsample of the same soil as an inoculum yielded cell numbers of up to 107 per g of dry soil for the H2-CO2-utilizing methanogens and of up to 106 for the acetate-utilizing methanogens. Strain VeH52, isolated from the terminal positive dilution on H2-CO2, grouped within the phylogenetic radiation characterized by M. bryantii and M. formicicum and the environmental sequences of the Methanobacterium-like group. A consortium of two distinct methanogens grew in the terminal positive culture on acetate. These two organisms showed absolute 16S rRNA gene identities with environmental sequences of the novel Methanosaeta-like group and the Methanobacterium-like group. Methanosarcina spp. were identified only in the less-dilute levels of the same dilution series on acetate. These data correlate well with acetate concentrations of about 11 μM in the pore water of this rice paddy soil. These concentrations are too low for the growth of known Methanosarcina spp. but are at the acetate utilization threshold of Methanosaeta spp. Thus, our data indicated Methanosaeta spp. and Methanobacterium spp. to be the dominant methanogenic groups in the anoxic rice soil, whereas Methanosarcina spp. appeared to be less abundant.  相似文献   

12.
Methanosarcina sp. strain TM-1 and Methanosarcina acetivorans produced and consumed H2 to maintain H2 partial pressures of 16 to 92 Pa in closed cultures during growth on acetate. Strain TM-1 produced H2 continuously when H2 was continuously removed from the culture. The potential physiological significance of H2 in acetate metabolism to methane is discussed.  相似文献   

13.
Abstract The fermentation of cellulose at 55°C by different associations of the 3 bacteria Clostridium thermocellum, Methanobacterium sp. and Methanosarcina MP, was studied. C. thermocellum alone produced acetate, lactate, ethanol, H2 and CO2. The co-culture C. thermocellum-Methanobacterium sp. produced more acetate and less ethanol than the monoculture of Clostridium .
Methanosarcina MP used acetate only in the triculture including Methanobacterium sp. When methanol was added (5 mM) to the triculture, Methanosarcina MP had a shorter lag phase on acetate and degraded much more acetate. maximum methane production was 8.5 mmol CH4/g cellulose degraded.  相似文献   

14.
A mesophilic acetogenic bacterium (MPOB) oxidized propionate to acetate and CO2 in cocultures with the formate- and hydrogen-utilizing methanogens Methanospirillum hungatei and Methanobacterium formicicum. Propionate oxidation did not occur in cocultures with two Methanobrevibacter strains, which grew only with hydrogen. Tricultures consisting of MPOB, one of the Methanobrevibacter strains, and organisms which are able to convert formate into H2 plus CO2 (Desulfovibrio strain G11 or the homoacetogenic bacterium EE121) also degraded propionate. The MPOB, in the absence of methanogens, was able to couple propionate conversion to fumarate reduction. This propionate conversion was inhibited by hydrogen and by formate. Formate and hydrogen blocked the energetically unfavorable succinate oxidation to fumarate involved in propionate catabolism. Low formate and hydrogen concentrations are required for the syntrophic degradation of propionate by MPOB. In triculture with Methanospirillum hungatei and the aceticlastic Methanothrix soehngenii, propionate was degraded faster than in biculture with Methanospirillum hungatei, indicating that low acetate concentrations are favorable for propionate oxidation as well.  相似文献   

15.
We recently isolated an acetate-oxidizing rodshaped eubacterium (AOR) which was capable of oxidizing acetate to CO2 when grown in coculture with the hydrogenotrophic methanogen Methanobacterium sp. strain THF. The AOR was also capable of growing axenically on H2CO2 which it converted to acetate. Previous results for the acetate oxidizing coculture showed isotopic exchange between acetate and CO2, suggesting that the AOR was using a pathway for acetate oxidation resembling a reveral of the acetogenic (carbon monoxide) pathway. In this study, it was found that production of 14CO2 from 14CH3COO- by the coculture was inhibited by 200 M cyanide, while methanogenesis from H2–CO2 was unaffected, implying the involvement of carbon monoxide dehydrogenase (CODH) in acetate oxidation. CODH was present at 0.055 mol methyl viologen reduced min-1 mg-1 protein in extracts of Methanobacterium sp. strain THF, but was present in higher levels in the acetate oxidizing coculture and in the AOR grown axenically and on H2–CO2 (2.0 and 6.4 mol min-1 mg-1 protein respectively). Anaerobic activity stains for CODH in native polyacrylamide gels from the AOR coculture showed components co-migrating with bands from both organisms, as well as an additional band in extracts of the coculture. Formate dehydrogenase (FDH) was present in both the AOR coculture and monoculture but not in extracts of H2–CO2 grown cells of Methanobacterium sp. strain THF. Formyltetrahydrofolate (FTHF) synthetase was not detectable in extracts of the AOR monoculture or coculture, although it was found in high amounts in extracts of H2–CO2 grown cells of the thermophilic acetogen Acetogenium kivui. Extracts of H2–CO2 grown cells of the AOR showed a fluorescence spectrum typical of pterin derivatives. Bioassay for folates showed levels to be at anabolic rather than catabolic levels. It is possible that the AOR uses pterins distinct from folate for catabolism. Isocitrate dehydrogenase, a citric acid cycle enzyme, was also present in the AOR, but at anabolic levels and -ketoglutarate dehydrogenase was not detectable.Abbreviations (AOR) acetate-oxidizing rod - (CODH) carbon monoxide dehydrogenase - (FDH) formate dehydrogenase - (FTHF) formyltetrahydrofolate  相似文献   

16.
The short-term effects of temperature on methanogenesis from acetate or CO2 in a thermophilic (58°C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with 14C-labeled methane precursors (14CH3COO or 14CO2). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60°C and was completely inhibited at 65°C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58°C and did not grow or produce methane at 65°C. An accidental shift of digestor temperature from 58 to 64°C during this period caused a sharp decrease in gas production and a large increase in acetate concentration within 24 h, indicating that the aceticlastic methanogens in the digestor were the population most susceptible to this temperature increase. During a later period when Methanothrix sp. was numerous in the digestor, methanogenesis from 14CH3COO was optimal at 65°C and completely inhibited at 75°C. A partially purified Methanothrix enrichment culture derived from the digestor had a maximum growth temperature near 70°C. Methanogenesis from 14CO2 in the sludge was optimal at 65°C and still proceeded at 75°C. A CO2-reducing Methanobacterium sp. isolated from the digestor was capable of methanogenesis at 75°C. During the period when Methanothix sp. was apparently dominant, sludge incubated for 24 h at 65°C produced more methane than sludge incubated at 60°C, and no acetate accumulated at 65°C. Methanogenesis was severely inhibited in sludge incubated at 70°C, but since neither acetate nor H2 accumulated, production of these methanogenic substrates by fermentative bacteria was probably the most temperature-sensitive process. Thus, there was a correlation between digestor performance at different temperatures and responses to temperature by cultures of methanogens believed to play important roles in the digestor.  相似文献   

17.
Ammonia accumulation is one of the main causes of the loss of methane production observed during fermentation. We investigated the effect of addition of carbon fiber textiles (CFT) to thermophilic methanogenic bioreactors with respect to ammonia tolerance during the process of degradation of artificial garbage slurry, by comparing the performance of the reactors containing CFT with the performance of reactors without CFT. Under total ammonia-N concentrations of 3,000 mg L−1, the reactors containing CFT were found to mediate stable removal of organic compounds and methane production. Under these conditions, high levels of methanogenic archaea were retained at the CFT, as determined by 16S rRNA gene analysis for methanogenic archaea. In addition, Methanobacterium sp. was found to be dominant in the suspended fraction, and Methanosarcina sp. was dominant in the retained fraction of the reactors with CFT. However, the reactors without CFT had lower rates of removal of organic compounds and production of methane under total ammonia-N concentrations of 1,500 mg L−1. Under this ammonia concentration, a significant accumulation of acetate was observed in the reactors without CFT (130.0 mM), relative to the reactors with CFT (4.2 mM). Only Methanobacterium sp. was identified in the reactors without CFT. These results suggest that CFT enables stable proliferation of aceticlastic methanogens by preventing ammonia inhibition. This improves the process of stable garbage degradation and production of methane in thermophilic bioreactors that include high levels of ammonia.  相似文献   

18.
The fermentation of cellulose by monocultures of Acetivibrio cellulolyticus and cocultures of A. cellulolyticus-Methanosarcina barkeri, A. cellulolyticus-Desulfovibrio sp., and A. cellulolyticus-M. barkeri-Desulfovibrio sp. was studied. The monoculture produced ethanol, acetate, H2, and CO2. More acetate and less ethanol was formed by the cocultures than by the monoculture. Acetate was utilized by M. barkeri in coculture with A. cellulolyticus after a lag period, whereas ethanol was metabolized by the sulfate reducer only under conditions of low H2 partial pressure, i.e., when cocultured with A. celluloyticus-M. barkeri or when grown together with the methanogen. Only the three-component culture carried out the rapid conversion of cellulose to CO2 and methane. Furthermore, this culture hydrolyzed the most cellulose—85% of that initially present. This amount was increased to 90% by increasing the population of M. barkeri in the triculture. Methane production was also increased, and a quicker fermentation rate was achieved.  相似文献   

19.
Spontaneous mutants of mesophilic Methanobacterium, Methanobrevibacter and Methanosarcina species resistant to 6-mercaptopurine, 5-fluorouracil, 8-azaguanine, 6-azauracil or 5-fluorodeoxyuridine were isolated. Low level resistant mutants were unstable but highly resistant strains (resistance factor greater than 10-fold) were stable and showed growth characteristics comparable to the parent. Wild type strains showed linear uptake of hypoxanthine and uracil into cells, but guanine uptake was only detected in Methanosarcina mazei. 6-Mercaptopurine-resistant clones of Methanobacterium and Methanobrevibacter species and 8-azaguanine-resistant clones of Methanosarcina mazei showed reduced uptake of hypoxanthine and guanine respectively, but no evidence for altered permeability of 5-fluoro-and 6-azauracil-resistant strains to uracil was obtained. Double resistant mutants of Methanobacterium sp. strain FR-2 were characterised. Although these generally exhibited reduced specific growth rates, several were selected which showed similar growth to the parent.Abbreviations DSM Deutsche Sammlung von Mikroorganismen, Federal Republic of Germany - MJC minimum inhibitory concentration - cfu colony forming unit - MP 6-mercaptopurine - FU 5-fluorouracil - FDU 5-fluorodeoxyuridine - AG 8-azaguanine - AU 6-azauracil - DA l-deazaadenosine  相似文献   

20.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-14C]acetate to 14CO2 when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H2) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H2 levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H2 levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H2 as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO2 plus H2, driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号