首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine pancreatic receptor for bombesin and gastrin releasing peptide (GRP) has been characterized. Analysis of the binding of 125I-GRP to membranes indicates a single class of sites (10(-13) mol/mg protein) with Kd of 43 pM. A 70 kDa membrane protein was cross-linked to 125I-GRP by bis(sulfosuccinimidyl) suberate; labeling was blocked by GRP, GRP (14-27), AcGRP(20-27), GRP(18-27), bombesin and ranatensin, was partially blocked by [Leu13 psi (CH2NH)Leu14]bombesin and was unaffected by GRP(21-27) and GRP(1-16). The IC50 values for the competitive displacement of 125I-GRP from intact membranes by these peptides were similar to those obtained by the cross-linking experiments showing that the 70 kDa protein is the GRP receptor. The GRP receptor is G-protein coupled; divalent cations are required for high-affinity binding and nonhydrolyzable GTP analogs decrease receptor affinity. In minced pancreas, GRP caused a dose-dependent increase in inositol phosphates implicating phospholipase C in signal transduction. We suggest that the murine pancreatic receptor for bombesin/GRP is a 70 kDa membrane protein, is associated with a G-protein and stimulates phosphatidylinositol turnover.  相似文献   

2.
The effects of bombesin on three human small cell lung carcinoma cell (SCLC) lines (NCI-H69, NCI-H128, and NCI-H345) have been examined and compared to the effects of the peptide on the mouse fibroblast cell line Swiss 3T3, and the rat pituitary tumor cell line GH3W5. While all three SCLC lines expressed messenger RNA encoding pro-gastrin releasing peptide (GRP), only the NCI-H345 cells expressed detectable membrane receptors for GRP and responded to nanomolar concentrations of bombesin as shown by 125I-GRP binding, total inositol phosphate accumulation, and increased clonal growth in soft agarose. These data show that some SCLC lines are insensitive to bombesin and do not express detectable membrane receptors for GRP.  相似文献   

3.
Prolonged exposure (40 h) of Swiss 3T3 cells to bombesin induced homologous desensitization to bombesin and structurally related peptides including mammalian gastrin releasing peptide (GRP). The ability of bombesin to mobilize intracellular Ca2+, inhibit epidermal growth factor binding, and stimulate DNA synthesis was profoundly and selectively inhibited. In contrast, Ca2+ mobilization by either vasopressin or bradykinin was unaffected, indicating that chronic desensitization is mechanistically distinct from acute desensitization of Ca2+ mobilization. Prolonged (24 or 40 h) pretreatment with bombesin also induced a 78 +/- 5% loss of bombesin receptor binding sites in both intact and plasma membrane preparations of Swiss 3T3 cells without an apparent change in receptor affinity (Kd = 1.9 +/- 0.1 x 10(-9) M and Kd = 1.8 +/- 0.2 x 10(-9) M for control and pretreated cells, respectively). Loss of 125I-GRP binding was slow and progressive with half-maximal loss of binding occurring after 7 h and maximal after approximately 14 h. Cross-linking of 125I-GRP to intact cultures and membrane preparations revealed an identical time-dependent loss of the Mr = 75,000-85,000 cross-linked band, previously identified as the bombesin receptor. Prolonged exposure of the cells to phorbol 12,13-dibutyrate, epidermal growth factor, cholera toxin, or mitogenic combinations of these agents did not alter 125I-GRP binding. Receptor down-regulation and loss of mitogenic responsiveness to bombesin were: (a) induced in a parallel dose-dependent manner by bombesin (ED50 = 1 nM), GRP (ED50 = 2 nM), and neuromedin B (ED50 = 20 nM), but not by the biologically inactive fragment GRP (1-16); (b) inhibited by the specific bombesin antagonist [Leu13-psi(CH2NH)-Leu14] bombesin, and (c) reversed upon removal of bombesin with a similar time course (full recovery after 15 h). On the basis of these observations, we propose that prolonged pretreatment of Swiss 3T3 cells with bombesin induces homologous desensitization to peptides of the bombesin family by down-regulation of cell surface bombesin receptors.  相似文献   

4.
To examine the biochemical basis for growth factor-induced responses in human lung cancer cells, we used the quin2 technique to study the effect of the amphibian peptide bombesin and its congeners including mammalian gastrin-releasing peptide (GRP) on the intracellular free calcium level [Ca2+]i in small cell lung cancer cell lines. In five of eleven cell lines tested, Tyr4-bombesin or GRP elicited a rapid and transient increase in [Ca2+]i. The response was seen with as little as 1 nM ligand, was not affected by membrane depolarization, and derived in part from internal calcium stores. Desensitization to a second addition of active bombesin congeners occurs subsequent to initial addition of Tyr4-bombesin. Structure-activity analysis showed the carboxyl-terminal octapeptide was the active portion of the peptide. Analogs in which the carboxyl terminus was oxidized or deamidated were inactive. Ranatensin, litorin, alytesin, and GRP, but not physalaemin, were as active as Tyr4-bombesin. A monoclonal antibody to the carboxyl terminus of bombesin selectively blocked the increased [Ca2+]i elicited by Tyr4-bombesin. These studies suggest that bombesin congeners can act on some small cell lung cancer cell lines by a pathway utilizing increased [Ca2+]i.  相似文献   

5.
The presence of bombesin (gastrin-releasing peptide, GRP)-like immunoreactivity in mucosal endocrine cells of human fetal lung is well established. In this study we have investigated the localisation of pro-GRP mRNA and GRP gene products and compared the distribution and levels of extractable GRP- and C-terminal flanking peptide of human pro-GRP-like immunoreactivity in order to verify synthesis and to investigate their coexistence and molecular forms. Human fetal lungs (14 to 23 weeks gestation) were immunostained, and extracts were assayed using region-specific antisera to pro-GRP. Additional antisera to chromogranin and protein gene product 9.5 (PGP 9.5) were used for immunostaining by the peroxidase anti-peroxidase technique and for double immunofluorescence staining using antisera raised in two species. Immunoreactivity for both bombesin (GRP) and flanking peptide was seen mainly in the same endocrine cells, but more cells were stained with antisera to flanking peptide than with antiserum to bombesin (GRP). In situ hybridisation showed that pro-GRP mRNA was present and thus synthesis of the peptides was taking place. Endocrine cells and nerve fibres were PGP 9.5-immunoreactive, and a subset of cells was immunoreactive for bombesin gene products. Radioimmunoassay and chromatography show that pro-GRP is present in both the uncleaved and cleaved forms, and, in agreement with immunocytochemistry results, that an excess of C-terminal peptide of pro-GRP is detectable. It is therefore concluded that GRP-like peptides and flanking peptide are co-localised in human pulmonary endocrine cells, but the latter is found in larger concentrations than free GRP. Thus GRP-like peptides may be secreted separately from the flanking peptide(s) of pro-GRP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of bombesin and gastrin releasing peptide (GRP) on the release of catecholamine were investigated by using isolated rat adrenal gland. Bombesin and GRP stimulated an epinephrine (E) release with dose-dependency. A half maximal effect of bombesin was observed at 1.2 X 10(-9) M, and a maximal release of E occurred at 1 X 10(-6) M of bombesin. The stimulatory effect of GRP on the E release was very similar to that of bombesin. Although both these peptides also stimulated a norepinephrine (NE) release, a significant effect was detected at concentrations of bombesin and GRP above 1 X 10(-7) M. Nicotine and pilocarpine stimulated both E and NE releases dose dependently, but the effect of pilocarpine on E and NE release was 1/100 or less potent than that of nicotine. Bombesin-induced catecholamine releases were not inhibited by hexamethonium or atropine that fully impeded the stimulatory effects of nicotine or pilocarpine. In addition, bombesin had additive effects on the nicotine- or pilocarpine-induced E and NE releases. These data strongly suggest that bombesin or GRP plays a physiological role as one of the important regulators in catecholamine secretion in the adrenal gland.  相似文献   

7.
Summary The presence of bombesin (gastrin-releasing peptide, GRP)-like immunoreactivity in mucosal endocrine cells of human fetal lung is well established. In this study we have investigated the localisation of pro-GRP mRNA and GRP gene products and compared the distribution and levels of extractable GRP-and C-terminal flanking peptide of human pro-GRP-like immunoreactivity in order to verify synthesis and to investigate their coexistence and molecular forms. Human fetal lungs (14 to 23 weeks gestation) were immunostained, and extracts were assayed using regionspecific antisera to pro-GRP. Additional antisera to chromogranin and protein gene product 9.5 (PGP 9.5) were used for immunostaining by the peroxidase anti-peroxidase technique and for double immunofluorescence staining using antisera raised in two species. Immunoreactivity for both bombesin (GRP) and flanking peptide was seen mainly in the same endocrine cells, but more cells were stained with antisera to flanking peptide than with antiserum to bombesin (GRP). In situ hybridisation showed that pro-GRP mRNA was present and thus synthesis of the peptides was taking place. Endocrine cells and nerve fibres were PGP 9.5-immunoreactive, and a subset of cells was immunoreactive for bombesin gene products. Radioimmunoassay and chromatography show that pro-GRP is present in both the uncleaved and cleaved forms, and, in agreement with immunocytochemistry results, that an excess of C-terminal peptide of pro-GRP is detectable. It is therefore concluded that GRP-like peptides and flanking peptide are co-local-ised in human pulmonary endocrine cells, but the latter is found in larger concentrations than free GRP. Thus GRP-like peptides may be secreted separately from the flanking peptide(s) of pro-GRP. Furthermore PGP 9.5 appears to be a useful marker for endocrine cells in the respiratory epithelium of human fetal lung.  相似文献   

8.
Small cell lung cancer (SCLC) patients suffer from pulmonary stresses such as dyspnea and chest pain, and the pathogenic mechanisms are not known. SCLC cells secrete a variety of bioactive neuropeptides, including bombesin-like peptides. We hypothesize that these peptides may enhance the sensitivity of the pulmonary chemosensitive nerve endings, contributing to the development of these pulmonary stresses in SCLC patients. This study was therefore carried out to determine the effects of bombesin and gastrin-releasing peptide (GRP), a major bombesin-like peptide, on the sensitivities of pulmonary chemoreflex and isolated pulmonary vagal chemosensitive neurons. In anesthetized, spontaneously breathing rats, intravenous infusion of bombesin or GRP significantly amplified the pulmonary chemoreflex responses to chemical stimulants such as capsaicin and ATP. The enhanced responses were completely abolished by perineural capsaicin treatment of both cervical vagi, suggesting the involvement of pulmonary C-fiber afferents. In isolated pulmonary vagal chemosensitive neurons, pretreatment with bombesin or GRP potentiated the capsaicin-induced Ca(2+) transient. This sensitizing effect was further demonstrated in patch-clamp recording studies; the sensitivities of these neurons to both chemical (capsaicin and ATP) and electrical stimuli were significantly enhanced by the presence of either bombesin or GRP. In summary, our results have demonstrated that bombesin and GRP upregulate the pulmonary chemoreflex sensitivity in vivo and the excitability of isolated pulmonary chemosensitive neurons in vitro.  相似文献   

9.
Gastrin-releasing peptide (GRP) is a neuroendocrine hormone that may be involved in the pathophysiology of small cell lung carcinoma. We describe carboxylterminal peptide analogues of GRP and bombesin, a 14-residue amphibian homologue, that were modeled after the antagonist [Leu13-psi(CH2NH)-Leu14]bombesin and retained the psi bond. Three novel peptides contained a Leu insertion amino to the psi bond, i.e. ... Leu13Leu14 psi X (residues numbered after bombesin) where X = LeuNH2 or norleucine-NH2). The Leu-insertion analogues behaved as pure partial agonists/antagonists when examined for the ability to stimulate [3H]thymidine incorporation into quiescent Swiss 3T3 cells (agonist activity) and to diminish the agonist response of GRP (antagonist activity). A time course of [3H]thymidine incorporation into quiescent cells indicated maximal incorporation at 20-h post-peptide addition for bombesin and GRP and a Leu-insertion peptide, but the extent of the incorporation for the Leu-insertion peptide was half that of GRP and bombesin. The agonist dose responses of the Leu-insertion peptides (EC50 values of 1-10 nM) paralleled GRP and bombesin, but the maximal response of the Leu-insertion peptides, even at concentrations as high as 10(-4) M, was half the maximal value of GRP or bombesin. High concentrations of the Leu-insertion peptides antagonized 10 nM GRP (a concentration that produced a near-maximal GRP response) yielding a response that was half the maximal value of GRP and equivalent to the maximal response of the Leu-insertion peptides alone. Analogues of the form ... Leu13 psi X behaved as complete antagonists. The KD values of the Leu-insertion peptides for competitive binding versus 125I-GRP (2-50 nM) were as potent as parent ... Leu14 agonists. Stability studies indicated that peptide potencies for both agonist and antagonist activities diminished upon peptide incubation in medium or on cells. The results suggested that, for the Leu-insertion peptides, degradation into distinct products with different activities was not responsible for their partial agonist/antagonist behavior. Computer-generated molecular modeling studies indicated that the novel structures could adopt energy minimized conformations for either an agonist or an antagonist as proposed earlier (Coy, D.H., Heinz-Erian, P., Jiang, N.-Y., Sasaki, Y., Taylor, J., Moreau, J.-P., Wolfrey, W.T., Gardner, J.D., and Jensen, R. T. (1988) J. Biol. Chem. 263, 5056-5060).  相似文献   

10.
Bombesin-peptide (BLP) immunoreactivity occurs at high levels in fetal lung. Previous studies showed that bombesin promotes fetal lung development. To test the hypothesis that such effects are mediated by known mammalian bombesin receptors [gastrin-releasing peptide (GRP)/bombesin-preferring receptor (GRPR), neuromedin B (NMB) receptor (NMBR), and the orphan bombesin receptor subtype-3 (BRS-3)], we analyzed the ontogeny of GRPR, NMBR, and BRS-3 gene expression in mouse lung. We examined the regulation of these three genes by dexamethasone and bombesin, which modulate lung development. Using incorporation of [3H]thymidine and [3H]choline, we then assessed whether GRP, NMB, and Leu8-phyllolitorin modulate lung growth and maturation in fetal lung explants. GRPR gene expression was detected predominantly in utero, whereas NMBR and BRS-3 genes were expressed from embryonic days 13-16 and on multiple postnatal days. All three mRNAs are present in airway epithelium and mesenchymal cells but occur in different relative patterns. These genes were regulated differently. Dexamethasone and bombesin increased GRPR mRNA, bombesin downregulated NMBR, and neither agent affected BRS-3. GRP increased incorporation of [3H]thymidine and [3H]choline in explants, whereas NMB induced cell proliferation and Leu8-phyllolitorin yielded variable results. Cumulative data suggest the involvement of multiple BLP receptors, including novel molecules, and argue against simple functional redundancy within this gene family during lung development.  相似文献   

11.
All parts of the internal female reproductive tract of the rat contained nerve fibers with immunocytochemically visible gastrin-releasing peptide (GRP)-like material. GRP-like immunoreactivity was also seen in nerve cell bodies of the paracervical ganglion formation, which in addition, harboured GRP nerve fibers. Pharmacological experiments were performed on isolated uterine and cervical smooth muscle tissue from two groups of spayed animals, one of which received estradiol. Both GRP and its non-mammalian counterpart, bombesin, evoked concentration-dependent clonic contractions in uterus and cervix, most pronounced in the estrogen-treated animals. Bombesin induced a stronger contractile force than GRP. The responses were not affected by tetrodotoxin. The observations suggest that GRP may be one of several neural messengers involved in the control of uterine motor activity.  相似文献   

12.
Andoh T  Kuwazono T  Lee JB  Kuraishi Y 《Peptides》2011,32(10):2098-2103
Gastrin-releasing peptide (GRP), secreted from the central terminals of primary afferents, is involved in the transmission of itch signals in the spinal dorsal horn. Although primary afferents containing GRP are distributed throughout the skin, the role of peripherally released GRP in the itch response is unknown. We investigated whether GRP acts on the skin to induce an itch response in mice. Intradermal injections of GRP(18-27) (1-300 nmol/site) elicited scratching. GRP(18-27)-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone hydrochloride, the BB(2) bombesin receptor antagonist RC-3095, the H(1) histamine receptor antagonists fexofenadine hydrochloride and chlorpheniramine maleate, and the PAR(2) proteinase-activated receptor antagonist FSLLRY-NH(2). Mast cell deficiency significantly, but not completely, reduced the GRP(18-27)-induced scratching. BB(2) bombesin receptors are present in mast cells in the skin, and intradermal injection of GRP(18-27), not only induced scratching, but also led to mast cell degranulation. GRP(18-27)-induced mast cell degranulation was inhibited by the BB(2) bombesin receptor antagonist RC-3095. These results suggest that peripherally released GRP can induce an itch response, at least partly, through activation of BB(2) receptors present in the mast cells, triggering their degradation and the release of histamine and the serine proteinase, tryptase.  相似文献   

13.
Bombesin and the related mammalian peptides, such as gastrin-releasing peptide (GRP), are potent mitogens for some fibroblast cell lines. Here we have examined the bombesin- and GRP-mediated changes in the phosphorylation of proteins in Swiss 3T3 cells and compared these to the events observed after platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and tumor promoter treatment. In agreement with previous reports, bombesin, GRP and PDGF, but not EGF, increased the activity of protein kinase C. This was assayed by an inhibition of [125I]EGF binding, stimulation in phosphorylation of pp60c-src on serine 12 and stimulation in phosphorylation of a group of 80 kd proteins. The different phosphorylated forms of the 80 kd proteins were examined by tryptic peptide mapping and shown to contain multiple phosphorylation sites. An investigation of the tyrosine phosphorylation events following mitogen treatment revealed a significant difference between PDGF and the bombesin peptides. PDGF treatment caused a marked increase in total cellular phosphotyrosine levels, and tyrosine phosphorylation both of known substrates and its own receptor. In contrast, bombesin and GRP treatments resulted in only a weak or undetectable increase in tyrosine phosphorylation of total cellular protein or known substrates. In this respect bombesin and GRP were more similar to EGF. The fact that the bombesin peptides do not induce a phosphorylation response identical with either PDGF or EGF suggests that there is not a single common signal pathway which is activated by all these mitogens.  相似文献   

14.
On the basis of structural homology and similar biological activity, gastrin-releasing peptide (GRP) has been considered the mammalian equivalent of amphibian bombesin. In this paper we now show this to be incorrect. Chromatography of frog (Bombina orientalis) gut extracts demonstrated two peaks of bombesin-like immunoreactivity (BLI), one similar in size to GRP and one similar in size to amphibian bombesin. These peaks were purified by high pressure liquid chromatography then subjected to mass spectrometric analyses to determine molecular weights and amino acid sequence. Based on the amino acid sequence of the lower molecular weight BLI species, a mixed oligonucleotide probe was prepared and used to screen a B. orientalis stomach cDNA library. Sequence analysis showed that all hybridizing clones encoded a 155-amino acid protein homologous to the mammalian GRP precursor. The mass spectra of the high and low molecular weight peaks of frog gut BLI were consistent with their origin from the processing of the frog GRP (fGRP) precursor into GRP-29 and GRP-10, just like the processing of the rat GRP precursor. Sequence homology showed that the fGRP precursor is more homology showed that the fGRP precursor is more closely related to the mammalian GRP precursors than to either the frog bombesin or frog ranatensin precursors. Northern blot analysis showed that fGRP is encoded by a mRNA of 980 bases, clearly different from the 750-base mRNA which encodes frog bombesin. Northern blot analysis and in situ hybridization showed fGRP mRNA in frog brain and stomach and bombesin mRNA in frog skin, brain, and stomach. That frogs have independent genes for both GRP and bombesin raises the possibility that mammals have an as yet uncharacterized gene encoding a true mammalian bombesin.  相似文献   

15.
The development of a biotinylated bombesin/gastrin-releasing peptide (GRP) for use as a receptor probe is reported. The lysine13 of a GRP-27 was substituted by arginine and lysine was added to the amino terminus. Biotinylation of the N-terminal lysine was performed. The biotinylated peptide was purified by HPLC and characterized by mass spectral analysis. Binding studies with murine Swiss 3T3 fibroblasts, cells known to express bombesin/GRP receptors, yielded a dissociation curve for the biotinylated GRP-27 analogue (biotin-Lysyl[Asp12,Arg13]GRP-27) which was nearly identical to that of native GRP. Using studies of gastrin release from isolated canine G cells, equipotent functional activity of the biotinylated probe and unmodified GRP was demonstrated. Measurements of retained 125I-avidin confirmed that the biotin/avidin interaction could occur once the biotin-peptide complex was bound. Applicability of the probe was demonstrated with fluorescent microscopy using avidin-FITC on Swiss 3T3 fibroblasts. In conclusion, a novel biotinylated bombesin/GRP analogue has been developed which retains the functional characteristics of the native peptide and is a useful probe for receptor studies.  相似文献   

16.
Prolonged exposure of Swiss 3T3 cells to vasopressin causes heterologous mitogenic desensitization to bombesin and structurally related peptides including gastrin-releasing peptide (GRP) without down-regulation of the bombesin receptor. The number and affinity of bombesin/GRP receptor sites and modulation of 125I-GRP binding by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) are unaffected in membrane preparations from vasopressin-treated cultures. Stimulation of inositol phosphate accumulation, mobilization of intracellular calcium, production of diacylglycerol, and transmodulation of the epidermal growth factor receptor by bombesin are similarly unaffected. Thus, the heterologous mitogenic desensitization is not due to uncoupling of bombesin receptor from transducing G protein(s) or to an inability to activate phospholipase C. Bombesin, unlike vasopressin, causes a rapid dose-dependent release of [3H]arachidonic acid and prostaglandin E2 from Swiss 3T3 cells (EC50 approximately 4 nM), which is inhibited by the specific bombesin receptor antagonist [Leu13-psi(CH2NH)-Leu14]bombesin. Crucially, release of [3H]arachidonic acid and prostaglandin E2 by bombesin is completely suppressed by prolonged pretreatment with vasopressin (EC50 = 0.6 nM). The mitogenic action of bombesin is restored by adding arachidonic acid to vasopressin-treated cells. We conclude first that arachidonic acid release is an early signal in the mitogenic response to bombesin and second that pretreatment with vasopressin induces heterologous mitogenic desensitization to bombesin by a novel mechanism: inhibition of arachidonic acid release.  相似文献   

17.
Gastrin-releasing peptide (GRP) is a member of bombesin-like peptides and bombesin and neuromedin B are other members of this family. They act on receptors that belong to the GPCR superfamily and exert important physiological functions upon binding to their receptors. The biologically active C-terminal decapeptide of GRP (GRP10) was studied in explicit DMPC bilayers using molecular dynamics simulations. In the initial conformation, the peptide was placed perpendicular to the membrane plane and the peptide-membrane complex with approximately 20,000 atoms was simulated for a period of 8 ns. After a 5 ns simulation, GRP10 adopted a tilted orientation and the tilt angle with respect to the bilayer normal was approximately 60 masculine. Analysis of the interactions of individual residues indicated the role of histidine residues in maintaining a tilted orientation.  相似文献   

18.
Bombesin and the C-terminal portion of gastrin-releasing peptide (GRP14-27) each increase clonal growth rate and colony-forming efficiency of normal human bronchial epithelial cells. These effects occur in the presence or absence of an optimal concentration (5 ng/ml) of epidermal growth factor (EGF). In contrast to EGF bombesin and GRP14-27 do not stimulate cell migration. Thus, bombesin and the C-terminal fragment of gastrin-releasing peptide represent a new class of peptides mitogenic for normal human epithelial cells.  相似文献   

19.
J E Fox  T J McDonald 《Life sciences》1984,35(16):1667-1673
Close intraarterial injections of synthetic porcine gastrin releasing peptide (GRP) or bombesin stimulated contractions in the stomach and inhibited ongoing contractile activity in the small intestine of anaesthetized dogs. Contractile activity of the circular muscle was recorded by serosal strain gauges and phasic activity when desired was elicited by local field stimulation or intraarterial motilin injections. In the stomach (corpus and antrum) following tetrodotoxin blockade of field-stimulated contractions, the contractile response to either peptide was not present, suggesting that stimulation of receptors on nerves initiated contractions in the stomach. Similarly, in the small intestine, the inhibitory response was eliminated by tetrodotoxin suggesting a neural receptor. Pre-treatment with reserpine did not alter the inhibitory response, either in the presence or absence of atropine, therefore, adrenergic inhibitory mechanisms did not appear to be involved. The concentration of bombesin producing 50% inhibition of field stimulation (ED50) was increased following treatment with the putative M1 muscarinic antagonist, pirenzipine suggesting activation of M1 cholinergic inhibitory receptors by bombesin. After blockade by atropine of field-stimulated contractions and the contractile response to intraarterial acetylcholine, the ED50 for bombesin inhibition of motilin contractions was increased. After muscarinic blockade, the residual inhibitory response of GRP/bombesin may involve activation of a neural non-cholinergic non-adrenergic inhibitory mechanism. These results suggest that GRP and bombesin act to alter motility in the dog in vivo by affecting neural activity.  相似文献   

20.
The ability of bombesin-like peptides to elevate intracellular Ca2+ levels in small cell lung cancer cells was investigated using the fluorescent Ca2+ indicator Fura 2. Nanomolar concentrations of bombesin elevated cytosolic Ca2+ levels in the absence or presence of extracellular Ca2+. Potent bombesin receptor agonists, such as gastrin releasing peptide (GRP) or (GRP)14-27 elevated cytosolic Ca2+ levels whereas inactive compounds such as (D-Trp8)bombesin or (GRP)1-16 did not. Furthermore, the bombesin receptor antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11) substance P (30 microM) had no effect on the Ca2+ levels by itself but antagonized the increase in Ca2+ caused by 10 nM or 100 nM bombesin. These data suggest that bombesin receptors may regulate the release of Ca2+ from intracellular organelles in small cell lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号