首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在水温(22±1)℃条件下,研究了短期饥饿胁迫对我(鲵)鱼幼鱼生化组成、脂肪酸和氨基酸的影响.幼鱼分别饥饿Od(S0)、饥饿3d(S3)、饥饿6d(S6)、饥饿9d(S9)、饥饿12d(S12)和饥饿15d(S15).结果表明:鱼体内的粗蛋白、粗脂肪和糖类随着饥饿时间的延长而逐渐降低,而水分和灰分随着饥饿时间的延长而逐渐升高.饱和脂肪酸(SFA)和单不饱和脂肪酸(MUFA)显著下降(P<0.05);而多不饱和脂肪酸(PUFA)呈先上升趋势.(鲵)鱼幼鱼短期饥饿胁迫过程中,首先利用饱和脂肪酸,然后利用低不饱和脂肪酸,最后才动用高不饱和脂肪酸.双键位置不同的脂肪酸在饥饿过程中的损失速度也有差异,具体为n-9 PUFA>n-6 PUFA>n-3 PUFA.S0主要氨基酸为天冬氨酸、谷氨酸、蛋氨酸、亮氨酸、赖氨酸和精氨酸.经过不同时间饥饿后,氨基酸总量和必须氨基酸总量显著下降,与S0组均差异显著(p<0.05),但S9、S12和S15的基酸总量和必须氨基酸总量差异性不显著(p>0.05).  相似文献   

2.
3.
4.
培养条件对钝顶螺旋藻(Sp)NS-90020脂肪酸组成和含量的影响   总被引:1,自引:0,他引:1  
研究了不同培养条件对钝顶螺旋藻(Sp)NS-90020脂肪酸合成的影响。随着温度升高,其不饱和脂肪酸,γ一亚麻酸(GLA)相对含量降低,总脂肪酸含量升高,当温度为40℃时总脂肪酸和γ-亚麻酸绝对含量都达到最大值,分别为73.4mg/g干重和11.9mg/g干重;当培养基中NaCl浓度高于0.017mol/L时,其GLA相对含量降低,但低于0.0017mol/L时,对其脂肪酸组成无显著影响;氨水使其脂肪酸和GLA绝对含量升高,并在50mgN(NH3·H2O)时达到最大值,分别为67.96mg/g干重和13.63mg/g千重;暗处理92h使其总脂肪酸和GLA绝对含量升高;缺乏Fe2 或Mg2 或Mo2 时,其总脂肪酸和GLA绝对含量降低,而缺乏PO43-时,其总脂肪酸和GLA绝对含量略有升高。  相似文献   

5.
In this study, we investigated how rat reproductive cells, testosterone, and the fatty acid composition of the phospholipid fraction of rats' testis cells are affected by extremely low frequency magnetic field (ELFMF). The change in fatty acid composition of the membrane phospholipid fraction can be the mechanism for this effect. We used a total of 26 male Wistar Albino rats, 14 experimental, and 12 controls. The experimental group rats were exposed to a magnetic field (0.8 mT) for 5 weeks, 3 hr per day. The control group rats were kept between inactive coils. After 5 weeks, the testis tissues and sperm cells of all rats were histopathologically investigated and sperm counts determined. Epididymal sperm count did not change compared to the control group (p>.05). Besides this, amorphous head, banana-like head, hammer head, coiled tail, abnormal mid-piece and tail, multiple, and cytoplasmic-droplet type cell numbers did not change in either group (p>.05). However, a statistical difference was found between the control and experimental groups with respect to head with lack of hook and isolated head type sperm (p<.05). In addition, testosterone levels were also found to be altered (p<.05). In the histopathologic investigation of testis tissue, decreased spermatogenesis in some seminiferous tubules, congestion in blood vessels of the interstitium, and increases in interstitial edema and Sertoli cells were observed. Leydig cells were found to be normal in appearance. The fatty acid of the testis cell membrane phospholipids was decreased in the experimental group with respect to the control group.  相似文献   

6.
氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响   总被引:25,自引:0,他引:25  
为了研究氮源的类型和浓度对微藻脂肪酸组成的影响 ,用含有不同浓度NO3 -、NH4 、NH2 CONH2 的培养基 ,对三角褐指藻 (Phaeodactylumtricornutum)进行了培养 ,并测定了其生长和脂肪酸组成。结果表明 ,培养基中不添加氮源时 ,三角褐指藻生长缓慢 ,但多不饱和脂肪酸 (PUFAs)和C18脂肪酸 (C18∶0 ,C18∶2 (n -6) ,C18∶3 (n -6) )占总脂肪酸的比例较高 ;氮浓度较低 (<1 8mmol/L)时 ,三角褐指藻以NH4 为氮源 ,生长较快 ;氮浓度较高 (>3 5mmol/L)时 ,以NH2 CONH2 为氮源 ,生长较快。以NH4 或NH2 CONH2 为氮源时 ,EPA(Eicosapentaenoicacid)和PUFAs占总脂肪酸的比例随着其浓度的增加而上升 ;而以NO3 -为氮源时 ,EPA和PUFAs随着NO3 -浓度增加先上升后下降 ,最适NO3 -浓度为 1 8mmol/L ,此时的EPA占总脂肪酸的比例为 16 7%。EPA占干重 (w/w)的比例 ,不管是哪种氮源 ,均随着氮浓度的增加而升高 ,但是在 0 9— 3 5mmol/L之间 ,3种氮源间EPA含量差异不显著。当氮源浓度为 7 0mmol/L时 ,以NH2 CONH2 为氮源 ,EPA和PUFAs含量最高 ,分别为 2 6 %和 4 4 %。PUFAs占干重的比例随着NO3 -浓度增加而下降 ,随NH2 CONH2 浓度增加而升高 ,而受NH4 浓度变化的影响不显著。  相似文献   

7.
稀有(鱼句)鲫的脂肪酸组成   总被引:1,自引:0,他引:1  
稀有(鱼句)鲫汉源种群和彭州种群全鱼中共检测到3种饱和脂肪酸(SFA),它们是C14∶0、C16∶0、C18∶0.4种单不饱和脂肪酸(MUFA),它们是C14∶1、C16∶1、C18∶1、C20∶1.4种多不饱和脂肪酸(PUFA),它们是C18∶2、C20∶4、C20∶5(EPA)、C22∶6(DHA).SFA 占总脂肪酸的23.63-28.97%,MUFA 占40.73-54.32%,PUFA 占9.96-23.17%,EPA占0.41-1.74%,DHA占0.11-5.37%.EPA 含量一般低于 DHA.UFA(MUFA+PUFA)%>SFA%,且 MUFA%>PUFA%,n-3FA/n-6FA为0.33-0.99.此外还测定了鱼肌、内脏脂肪、肝脏、性腺等的脂肪酸组成和含量.  相似文献   

8.
稀有鲫汉源种群和彭州种群全鱼中共检测到 3种饱和脂肪酸 (SFA) ,它们是C1 4∶0、C1 6∶0、C1 8∶0。 4种单不饱和脂肪酸 (MUFA) ,它们是C1 4∶1、C1 6∶1、C1 8∶1、C2 0∶1。 4种多不饱和脂肪酸 (PUFA) ,它们是C1 8∶2、C2 0∶4、C2 0∶5 (EPA)、C2 2∶6 (DHA)。SFA占总脂肪酸的2 3 6 3— 2 8 97% ,MUFA占 40 73— 5 4 3 2 % ,PUFA占 9 96— 2 3 1 7% ,EPA占 0 41— 1 74% ,DHA占 0 1 1— 5 3 7%。EPA含量一般低于DHA。UFA(MUFA +PUFA) % >SFA % ,且MUFA % >PUFA % ,n 3FA/n 6FA为 0 3 3— 0 99。此外还测定了鱼肌、内脏脂肪、肝脏、性腺等的脂肪酸组成和含量  相似文献   

9.
Eight species of marine phytoplankton commonly used in aquaculture were grown under a range of photon flux densities (PEDs) and analyzed for their fatty acid (FA) composition. Fatty and composition changed considerably at different PFDs although no consistent correlation between the relative proportion of a single FA and μ or chl a · cell?1 was apparent. Within an individual species the percentage of certain fatty acids covaried with PFDs, growth rate and/or chl a · cell?1. The light conditions which produced the greatest proportion of the essential fatty acids was species specific. Eicosapentaenoic acid. 20:5ω3 increased from 6.1% to 15.5% of the total fatty acids of Chaetoceros simplex Ostenfield grown at PFDs which decreased from 225 μE · m?2· s?1 to 6 μE · m?2· s?1, respectively. Most species had their greatest proportion of 20: 5ω3 at low levels of irradiance. Conversely, docosahexaenoic acid, 22:6ω3, decreased from 9.7% to 3.6% of the total fatty acids in Pavlova lutheri Droop as PFD decreased. The percentage of 22:6ω3 generally decreased with decreasing irradiances. In all diatoms the percentage of 16:0 was significantly correlated with PFD, and in three of five diatoms, with growth rate (μ). Results suggest that fatty acid composition is a highly dynamic component of cellular physiology, which responds significantly to variation in PFD.  相似文献   

10.
Abstract— Three dietary levels of essential fatty acids (EFA), 3 0, 0 75 and 0 07 calorie-% were fed to rats for two generations or more. Myelin was isolated at the ages of 18, 30, 45 and 120 days and synaptosomal plasma membranes at 18, 30 and 45 days. No difference was found in the lipid composition between the dietary groups in either subcellular fraction. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) were analysed. In myelin the proportions of 18:1 and 20:1 increased with age, while those of 20:4 (n-6) and 22:6 (n-3) decreased, in synaptosomal plasma membranes the proportions of 20:4 (n-6) decreased with age, but 22:6 (n-3) increased and the sum of the polyunsaturated fatty acids was constant. At no age were significant differences found between the proportions of saturated and monounsaturated fatty acids, in either myelin or the synaptosomal plasma membrane fraction, when the different dietary groups were compared. In myelin from rats fed 007 calorie-% EFA the proportions of 20:4 (n-6) were slightly lower than in the two other groups, while those of 22 6 (n-3) were considerably lower. The synaptosomal plasma membranes fraction of rats fed O-07 calorie-% EFA had equal or slightly larger amounts of 20:4 (n-6) than in the two other groups, while 22:6 (n-3) was considerably smaller. In both subcellular fractions the decreased proportion of fatty acids of linoleic and linolenic acid series was compensated for by an increase in 20:3 (n-9) and 22:3 (n-9). The sum of these two fatty acids was equal in the EPG of myelin and synaptosomal plasma membranes at 18 days of age. At 30 and 45 days of age a lower value was found in the synaptosomal plasma membranes, while in the myelin fraction a slight decrease was found only at 120 days of age.  相似文献   

11.
Eight species of marine phytoplankton showed significant variation in the relative amount of some fatty acids (FAs) in response to variation in temperature. Large changes in relative amounts of certain FAs occurred as a result of a 15° C change in growth temperature. For example, 14:0 increased from ?4% of total FAs at 10° C to > 20% at 25° C for Chaetoceros simplex and Isochrysis aff. galbana but decreased for Phaeodactylum tricornutum. The percentage of the polyunsaturated fatty acid (PUFA) 16:ω1 was consistently greater at 10° C than at 25° C, and the converse was usually true for 16: 4ω3. Calculated over all eight species, there was a modest but significant inverse relationship between the percentage of PUFAs and temperature. Only for Thalassiosira pseudonana was the percentage of either of the PUFAs and nutritionally essential fatty acids (EFAs) also an inverse function of temperature. For T. pseudonana, the percentage of the EFA 22:6ω3 decreased linearly with increasing temperature over the range from 10 to 25° C. For three species, the ratio of unsaturated/saturated FAs was correlated with growth rate when growth rate was controlled by variation in irradiance and temperature. Only for Thalassiosira pseudonana was the ratio of unsaturated/saturated FAs also an inverse function of temperature alone.  相似文献   

12.
我们先前的研究表明,植物多糖抑制体外培养的小鼠肉瘤S180细胞增殖并使细胞膜磷脂含量减少,同时抑制膜磷脂酰肌醇转换。为进一步探讨植物多糖与膜磷脂的关系,本文采用毛细管柱气相色谱法分析了茯苓多糖(PPS)、刺五加多糖(ASPS)与S180细胞一同温育24h后,细胞膜磷脂和中性脂的脂肪酸组成变化,发现中性脂的脂肪酸组成和不饱和性不受影响,磷脂的脂肪酸组成发生明显改变,花生四烯酸(C(20:4))和豆蔻酸(C(14:0))降低(P<0.05或P<0.01),与用作阳性药物对照的氨甲喋呤作用相似。本文对膜磷脂脂肪酸组成变化的意义结合先前的实验结果进行了讨论,认为在PPS、ASPS的抗肿瘤机理中,细胞膜磷脂生化特性的改变是重要环节。  相似文献   

13.
14.
The biochemical composition and fatty acid content of twelve strains of filamentous, heterocystous, nitrogen-fixing cyanobacteria have been determined. When grown under diazotrophic conditions, protein, carbohydrate, lipid, and nucleic acids comprised 37–52%, 16–38%, 8–13%, and 8–11% of the dry weight, respectively. The presence of a combined nitrogen source resulted in an increase in the protein content of the cells and a decrease in the levels of lipids and carbohydrates, although biomass productivity was not affected significantly. Biochemical composition also changed during culture growth, with the highest levels of proteins and lipids occurring as the culture entered stationary phase, whereas the highest levels of carbohydrate and nucleic acids were found during the exponential phase. Total fatty acid levels in the strains assayed ranged between 3 and 5.7% of the dry weight. With regard to fatty acid composition, all strains showed high levels of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SAFAs), with values of 24–45% and 31–52% of total fatty acids, respectively, whereas the levels of monounsaturated fatty acids (MUFAs) were in general lower (11– 32%). Palmitic acid (16:0) was the most prevalent SAFA, whereas palmitoleic (16:1n- 7) and oleic acid (18:1n-9) were the most abundant MUFAs in all the strains. Among PUFAs, γ-linolenic acid (GLA, 18:3n-6) was present at high levels (18% of total fatty acids) in Nostoc sp. (Chile) and at lower levels (3.6% of total fatty acids) in Anabaenopsis sp. The presence of GLA has not been previously reported in these genera of cyanobacteria. The rest of the strains exhibited high levels (12–35% of total fatty acids) of α-linolenic acid (ALA, 18:3n-3). Linoleic acid (18:2n-6) was also present at a substantial level in most of the strains. Eicosapentaenoic acid (EPA, 20:5n-3) was also detected in Nostoc sp. (Albufera). Some filamentous nitrogen-fixing cyanobacteria therefore represent potential sources of commercially interesting fatty acids.  相似文献   

15.
Fatty acid (FA), total lipid, protein, amino acid, carbon, nitrogen, and phosphorus content was analyzed in 24 samples of freshwater microalgae. The samples originated from batch, continuous, or mass cultures in various growth phases and from net samples from lakewater. FA were analyzed quantitatively by using an internal standard in a GLC system and expressed as mg·g?1 dry weight (DW). The FA of one group of blue-greens (e.g. Oscillatoria and Microcystis) were similar to those of the greens with higher amounts of 18C acids of the ω3 type compared to the ω6 type, whereas the other group (e.g. Anabaena and Spirulina) contained mostly ω6 acids. The flagellates, a taxonomically diverse group, were characterized by high amounts of long-chained (20–22 C) polyunsaturated FA (PUFA), particularly of the ω3 type. The ω3/ω6 ratio appears to be highest in algae in the exponential growth phase. The increased lipid content in stressed algae was mostly due to increased saturated fatty acids and ω6 acids, whereas the valuable ω3 acids were unchanged or even decreased. Amino acid composition (% of total amino acids) did not vary much betaken species, but when analyzed quantitatively (mg-g?1 DW), varied considerably between species and within species in different growth phases. The nitrogen and phosphorus contents were variable in all three algal groups. The relationship between PUFA and phosphorus content differed among the algal groups. The data suggest that PUFA in the phospholipids consist mostly ω3 acids.  相似文献   

16.
The fatty acid and sterol compositions of five species of marine dinoflagellates (Scrippsiella sp. Symbiodinium microadriaticum Freud, Gymnodinium sp., Gymnodinium sanguineum Hirasaki, and Fragilidium sp.) are reported. All contained the major fatty acids that are considered common in dinoflagellates, but the proportions were quite variable, and some species contained low contents of some polyunsaturated fatty acids. Concentration ranges for the major fatty acids were: 16:0 (9.0%–24.8%), 18:4(n-3) (2.5%–11.5%), 18:5(n-3) (7.0%–43.1%), 20:5(n-3) (EPA) (1.8%–20.9%), and 22:6(n-3) (DHA) (9.9%– 26.3%). Small amounts of novel very-long-chain highly unsaturated C28 fatty acids occurred in all species. Each dinoflagellate contained a complex mixture of 4-methyl sterols and 4-desmethyl sterols. Four species contained cholesterol, although the amounts were highly variable (from 0.2% of total sterols in Scrippsiella sp. to 45.6% in Fragilidium sp.). All but G. sanguineum contained the 4-methyl sterol dinosterol, and all species contained sterols lacking a double bond in the ring system (i.e. stanols); in Scrippsiella sp. cholestanol composed 24.3% of the total sterols. Other common features of the 4-methylsterol profiles were the presence of 23,24-dimethyl alkylation and unsaturation at Δ22 in the side chain. In Scrippsiella sp., four steroidal ketones were identified: cholestanone, dinosterone, 4α,23,24-trimethyl-5α-cholest-8(14)-en-3-one, and dinostanone. The structures of these corresponded to the major sterols in this species, suggesting that the sterols and steroidal ketones are biosynthetically linked. Steroidal ketones were not detected in the other species. Although fatty acid profiles can be used to distinguish among algal classes, they were not useful for differentiating among dinoflagellate species. In contrast, whereas some taxonomic groupings of dinoflagellates display similar sterol patterns, others, such as the gymnodinoids studied here, clearly do not. The combination of fatty acid, sterol, and steroidal ketone profiles may be useful complementary chemotaxonomic tools for distinguishing morphologically similar species. The identification of steroidal ketones supports earlier suggestions that certain dinoflagellates might be a significant source of such components in marine environments.  相似文献   

17.
为了探究脂肪酸对罗非鱼(Oreochromis niloticus)脂肪细胞增殖和分化的影响, 在体外培养罗非鱼前脂肪细胞, 并在其增殖和分化过程中分别添加100 μmol/L的棕榈酸(Palmitic Acid, PA)、油酸(Oleic Acid, OA), 亚油酸(Linoleic Acid, LA)和α-亚麻酸(α-Linolenic Acid, LNA)进行处理。使用SRB (Sulforhodamine B)染色法和油红O染色法检测外源性脂肪酸对脂肪细胞增殖和分化的影响, Real-time qPCR检测增殖分化过程中基因表达情况。结果显示, 在培养8d时, 外源添加的不饱和脂肪酸可以促进罗非鱼前脂肪细胞增殖, 并且增殖过程中增殖相关基因(c-fos和c-myc)、脂解相关基因(ATGL)和脂合成相关基因(PPARγ和CD36)的表达与对照组相比均显著提高(P<0.05)。此外, 外源脂肪酸的加入可以抑制脂肪细胞的分化。棕榈酸的加入使得脂肪细胞中产生的脂滴面积较少, 数量较多; 分化过程中细胞的β氧化相关基因(CPT-1a)与对照组相比显著上调, 而脂解相关基因(ATGL)则显著下调。外源性不饱和脂肪酸可以促进罗非鱼前脂肪增殖, 而饱和脂肪酸主要抑制细胞分化。在增殖过程中, 过量的脂肪酸先通过脂合成储存在胞内, 再借助脂解等途径进行代谢, 从而帮助细胞适应环境中高浓度的脂肪酸。而在分化过程中, 添加外源脂肪酸, 可能通过抑制脂肪细胞内的脂合成和脂解的发生, 同时促进β氧化等方式来抑制脂肪细胞分化。  相似文献   

18.
温、光、盐对硅藻STR01生长、总脂、脂肪酸的影响   总被引:1,自引:0,他引:1  
为了优化新分离STR01的生态培养条件, 采用单因子试验和正交试验研究了不同温度、光照强度、盐度和温、光、盐三因素三水平对该藻的生长、总脂和脂肪酸组成影响。结果表明: 温、光、盐对STR01的生长、总脂和脂肪酸组成影响显著(P<0.05)。生长的适宜温度为15—35℃, 最适25—30℃(K值达0.679—0.682), 总脂含量积累的最适温度是25℃(总脂可达17.23%), 温度20℃时有利于该藻PUFA的积累, 可达34.23%。STR01生长的适宜光照强度为40—120 μmol/(m2·s), 最适光强为60 μmol/(m2·s), 光照强度40 μmol/(m2·s)有利于该藻的PUFA积累, 可达34.29%。STR01生长的适宜盐度为10—35, 最适盐度25, 盐度25时PUFA含量较高(43.42%)。正交试验结果表明温度对STR01的平均相对生长速率和总脂含量影响显著, 生长的最优组合: 温度30℃、光照强度60 μmol/(m2·s)、盐度25, 该组合下的生长速率达0.756; 总脂含量积累的最优组合: 温度30℃、光照强度60 μmol/(m2·s)、盐度20, 该组合下的总脂含量为20.00%。PUFA的最优组合: 温度25℃、光照强度60 μmol/(m2·s)、盐度20, 该组合下PUFA的含量为35.37%。综上所述: 该藻生长迅速, 总脂含量较高, PUFA丰富, 是一种可开发利用的耐高温浮游硅藻。  相似文献   

19.
Abstract— The fatty acid composition of cerebrosides isolated from myelin and from light and heavy microsomes of adult mouse brain was determined. 2-Hydroxy fatty acids represented 80 per cent of the fatty acids in myelin cerebrosides and approximately 55 per cent of the fatty acids in both light and heavy microsomes. In myelin, the majority of the fatty acids, both normal and hydroxy, were of chain length > C-20; in microsomes, shorter chain acids (C-16 to C-20) predominated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号