首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The occurrence of neuropeptides in the retrocerebral complexes of adult male and females of the tobacco hawkmoth, Manduca sexta, was investigated using matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectrometry (MS), post source decay (PSD) and collision-induced dissociation (CID) MS/MS. From fractions of methanol extracts of corpora cardiaca (CC)/corpora allata (CA), separated by reversed-phase high performance liquid chromatography (RP-HPLC), a total of 11 mass ions were assigned to known peptides from M. sexta. These peptides were adipokinetic hormone (AKH), FLRFamides I, II and III, crustacean cardioactive peptide (CCAP), cardioactive peptide 2b (CAP(2b)), three myoinhibitory peptides, corazonin, and M. sexta allatostatin (Manse-AS). A further six masses were in agreement with Y/FXFGLamide allatostatins identified from other Lepidoptera. The sequence identities of FLRFamide I and AKH were confirmed using post source decay analysis. Fragmentation by collision-induced dissociation MS/MS identified an extended AKH peptide. The apparent differences in the peptides present in male and female retrocerebral complexes are most likely quantitative rather than sex specific.  相似文献   

2.
The combination of retrograde labelling with dextran-tetramethylrhodamine and MALDI-TOF mass spectrometry was used to analyse for the first time the peptidome of a series of morphologically identified single neurosecretory cells of an insect. Eight postero-lateral cells of the metathoracic ganglion of the American cockroach, Periplaneta americana, were used to demonstrate that: (1) the complete dissection procedure can be documented and (2) the mass spectrometric analysis of the dissected somata results in highly reproducible mass spectra. In total, 21 FMRFamide-related peptides were detected in each of the postero-lateral cells which release their neurosecretions via thoracic perisympathetic organs. Direct analysis of these neurohemal organs confirmed the co-storage of FMRFamide-related peptides. Two additional abundant peptides from thoracic perisympathetic organs which were not detectable in the postero-lateral cells were characterized using ESI-Q-TOF MS/MS. De novo sequencing yielded two related peptides (FERL/IEamides) without any similarity with known peptide families of insects.  相似文献   

3.
Three novel members of the periviscerokinin family could be identified directly from extracts of single abdominal perisympathetic organs of blaberoid cockroaches by means of electrospray ionization-quadrupole time of flight (ESI-QTOF) MS. Sequences of these periviscerokinins were confirmed by Edman degradation. Their primary structures are GSSGLIPFGRT-NH2 (Lem-PVK-1), GSSGLISMPRV-NH2 (Lem-PVK-2), and GSSGMIPFPRV-NH2 (Lem-PVK-3). Hitherto only known from the American cockroach, this neuropeptide family contains a highly conserved N-terminus whereas, at the C-terminus, only the penultimate amino-acid residue (Arg) has been found in all members of this peptide family. The identified periviscerokinins are the only abundant myoactive peptides in abdominal perisympathetic organs of blaberoid cockroches and they appear to be absent in the retrocerebral complex. Screening of extracts of single abdominal perisympathetic organs (70-90 microm in diameter), from five different species of the suborder Blaberoidea, revealed that they all contain the three neuropeptides which are described here for the first time.  相似文献   

4.
Audsley N  Weaver RJ 《Peptides》2003,24(10):1465-1474
The occurrence of neuropeptides in the brain of larvae of the tobacco hawkmoth, Manduca sexta, and tomato moth, Lacanobia oleracea, was investigated using matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) and post-source decay (PSD). Methanolic extracts of 100 brains separated by reversed-phase high performance liquid chromatography yielded numerous ion peaks, some of which were common to both species. In M. sexta six [M+H](+) ions were in agreement with peptides previously structurally characterised from M. sexta (FLRF-amides I, II and III, M. sexta allatostatin, CAP(2b) and myoinhibitory peptide VI), whereas a further five corresponded to other known lepidopteran peptides (cydiastatins 3 and 4, helicostatins 1 and 6 and helicokinin II). Of these the identities of FLRF-amide I, cydiastatins 3 and 4 and CAP(2b) were confirmed by PSD analysis. Fourteen [M+H](+) ions corresponding to known lepidopteran peptides (FLRF-amide I, cydiastatins 2, 3 and 4, helicostatins 1, 5, 6, 7 and 9, CCAP, CAP(2b), M. sexta allatostatin and myoinhibitory peptide VI) were measured in L. oleracea brain extracts. From this insect, cydiastatins 3 and 4, helicostatin 5 and FLRF-amide I were identified by PSD. These peptides had not previously been structurally characterised from L. oleracea.  相似文献   

5.
A mass spectrometric analysis carried out to determine the peptidome of the abdominal perisympathetic organs in the locust species Locusta migratoria and Schistocerca gregaria yielded a number of predominant ion peaks, among which are Lom-PVK (AAGLFQFPRVamide) and Scg-MT-2 (TSSLFPHPRLamide). In addition, three novel peptides were identified: Lom-PVK-2 (identical in Schistocerca): GLLAFPRVamide, Lom-PVK-3: DGGEPAAPLWFGPRVamide, and Scg-PVK-3: DGAETPGAAASLWFGPRVamide. An extensive mass spectrometric study of the central nervous system showed that the periviscerokinins (-PRVamides) and Scg-MT-2 (-FXXPRLamide) are restricted to the abdominal ganglia and their perisympathetic organs, while the pyrokinins (-FXPRLamides) are present only in the brain-retrocerebral complex. Sequence comparison with the Drosophila genes supports a conserved gene structure whereby a capability-like gene encodes the periviscerokinins that are expressed in the abdominal ganglia and stored in the perisympathetic organs, while a hugin-like gene encodes the pyrokinins that are expressed in the head ganglia and stored in the retrocerebral complex.  相似文献   

6.
Wegener C  Herbert Z  Eckert M  Predel R 《Peptides》2002,23(4):605-611
Periviscerokinins (PVKs) are a distinct insect peptide family with unusual distribution in the central nervous system and neurohemal release sites. PVKs were first isolated from the abdominal perisympathetic organs of Periplaneta americana, but can be found in other insect species. Peptides with structural similarity to PVKs have been identified through searches of the Drosophila genome. The cardioacceleratory peptide CAP(2b) of the hawkmoth Manduca sexta shares close amino acid identity with the PVKs and may thus be included as a structural member of the PVK peptide family. In this review, we provide support for grouping CAP(2b) as a PVK family member based on published sequences, and new immunocytochemical findings and mass spectrometric data.  相似文献   

7.
Different pyrokinin isoforms were identified from major neurohemal organs of the American cockroach. During their isolation they were recognized by bioassay using a hyperneural muscle preparation that is sensitive to pyrokinins. All structures were elucidated by sequence analysis and mass spectrometry. The primary structures of the novel peptides isolated from the retrocerebral complex are LVPFRPRL-NH2 (designated Pea-PK-3) and DHLPHDVYSPRL-NH2 (designated Pea-PK-4). A pyrokinin, labeled Pea-PK-5, was isolated from abdominal perisympathetic organs. Structural analysis of this peptide yielded the sequence GGGGSGETSGMWFGPRL-NH2. The threshold concentrations of the identified pyrokinins for an eliciting effect on contractions of the hyperneural muscle preparations differed dramatically. This indicates that the different distribution of pyrokinin-isoform observed in neurohemal organs may be associated with different functions. This is the first report of a differential distribution of peptide-isoforms in the neurohemal organs of insects.  相似文献   

8.
Manduca sexta allatotropin (Manse-AT) was first isolated on the basis of its ability to stimulate production of juvenile hormone in that insect. We examined whether this neuropeptide affects corpus allatum activity and visceral muscle contraction in adult females of the earwig, Euborellia annulipes. We also assessed the presence of allatotropin-like material in tissues using immunocytochemistry. Manse-AT at 1 nM to 10 muM stimulated juvenile hormone production in vitro by glands of low activity from 2-day virgin females. In glands of high activity from 12-day mated females, 1 and 100 nM allatotropin were effective, but 10 muM was not. Similarly, hindguts of 2-day and 12-day females significantly increased in motility in vitro in response to Manse-AT. A monoclonal antibody to Manse-AT was used to demonstrate allatotropin-like material throughout the nervous system of 2-day, virgin females. Immunoreactivity was most pronounced within varicosities of the corpora cardiaca and perisympathetic organs. No immunofluorescence was observed in gut tissue. Lastly, we showed that extract of retrocerebral complexes also enhanced in vitro hindgut motility from 2-day virgin females, in a dose-dependent manner. These results indicate material similar to M. sexta allatotropin in female earwigs and that such peptides may modulate juvenile hormone biosynthesis and visceral muscle contractions. Sensitivity to the peptides may change with physiological stage.  相似文献   

9.
In the sphinghid moth Manduca sexta, two allatoactive neuropeptides appear to be responsible for regulating juvenile hormone (JH) production by the corpora allata (CA). These peptides (M. sexta allatostatin, Mas-AS, and M. sexta allatotropin, Mas-AT) respectively inhibit and stimulate in vitro JH biosynthesis by CA in this insect. However, although Mas-AS inhibits CA in both larval and adult insects, Mas-AT is active only in adult M. sexta. The situation in other lepidopteran species is less clear-cut and, although both peptides have been detected (usually by immunologic and/or molecular techniques) in several other moths (including noctuids), their function as regulators of JH production remains uncertain. In the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae), we have previously demonstrated the occurrence of Mas-AS and/or Mas-AT in extracts of CA, brain and other organs, and have shown that both peptides are present in larval and adult forms. However, in L. oleracea, although Mas-AS inhibits larval and adult CA in vitro, it does so only at relatively high concentrations, and to a maximum of only approximately 70%. By contrast, Mas-AT (which is also present in larval and adult L. oleracea) stimulates larval and adult CA, but is substantially more potent ( approximately 100 fold) than the allatostatin. In this paper we present the results of paired, concurrent measurements (using ELISA) of levels of Mas-AS and Mas-AT in brains, CA and hemolymph (plasma and hemocytes) of L. oleracea at times when there are marked changes in JH titers. We also present data on the in vitro rates of JH biosynthesis by isolated CA, and on hemolymph JH esterase activity measured at the same critical developmental times, and discuss all of these data in relation to the putative allatoregulatory roles of the M. sexta allatotropic and allatostatic neuropeptides in L. oleracea.  相似文献   

10.
Myoinhibitory neuropeptides in the American cockroach   总被引:8,自引:0,他引:8  
Predel R  Rapus J  Eckert M 《Peptides》2001,22(2):199-208
A large number of myostimulatory neuropeptides from neurohaemal organs of the American cockroach have been described since 1989. These peptides, isolated from the retrocerebral complex and abdominal perisympathetic organs, are thought to be released as hormones. To study the coordinated action of these neuropeptides in the regulation of visceral muscle activity, it might be necessary to include myoinhibitors as well, however, not a single myoinhibitory neuropeptide of the American cockroach has been described so far. To fill this gap, we describe the isolation of LMS (leucomyosuppressin) and Pea-MIP (myoinhibitory peptide) from neurohaemal organs of the American cockroach. LMS was very effective in inhibiting phasic activity of all visceral muscles tested. It was found in the corpora cardiaca of different species of cockroaches, as well as in related insect groups, including mantids and termites. Pea-MIP which is strongly accumulated in the corpora cardiaca was not detected with a muscle bioassay system but when searching for tryptophane-containing peptides using a diode-array detector. This peptide caused only a moderate inhibition in visceral muscle assays. The distribution of Pea-MIP in neurohaemal organs and cells supplying these organs with Pea-MIP immunoreactive material, is described. Additionally to LMS and Pea-MIP, a member of the allatostatin peptide family, known to exhibit inhibitory properties in other insects, was tested in visceral muscle assays. This allatostatin was highly effective in inhibiting spontaneous activity of the foregut, but not of other tested visceral muscles of the American cockroach.  相似文献   

11.
The cells in the embryonic CNS of the tobacco hawkmoth, Manduca sexta, that synthesize a cardioacceleratory peptide 2 (CAP2)-like antigen were identified using immunohistochemical techniques. Two distinct neurosecretory cell types were present in the abdominal ventral nerve cord (VNC) that contain CAP2-like immunoreactivity during late embryogenesis: a pair of large (diameter range 15-20 microns) cells lying along the posterior, dorsal midline of abdominal ganglia A4-A8, and a bilateral set of four smaller (diameter range 6-11 microns) neurons which lie at the base of each ventral root in abdominal ganglia A2-A8. CAP2-like accumulation appeared to follow independent patterns in the two cell types. CAP2-like immunoreactivity began at 60% of embryo development (DT) in the medial cells, accumulated steadily throughout embryogenesis, and dropped markedly during hatching. Lateral cells synthesized the CAP2-like antigen later in development (70% DT) and showed a sharp drop in antigen levels between 75% and 80% of embryonic development. Extracts from developing M. sexta embryos were found to contain a cardioactive factor capable of accelerating the contraction frequency of the pharate adult moth heart in a fashion similar to CAP2. Immunoprecipitation with a monoclonal antibody that specifically recognizes the two endogenous Manduca cardioacceleratory peptides and purification using high pressure liquid chromatography identified this factor as cardioacceleratory peptide 2 (CAP2). Using an in vitro heart bioassay, the levels of this cardioactive neuropeptide were traced during the development of the M. sexta embryo. As with the immunohistochemical results, two periods during embryogenesis were identified in which the level of CAP2 dropped markedly: between 75% and 80% development, and at hatching. Embryo bioassays of CAP2 activity were used to identify possible target tissues for physiological activity during these two putative release times. CAP2 was found to accelerate contraction frequency in the embryonic heart and hindgut of Manduca in a dose-dependent fashion. Of these two possible targets, the hindgut proved to be more sensitive to CAP2, having a lower response threshold and a longer duration of response to a given concentration of the exogenously applied peptide. Based on these immunocytochemical, pharmacological and biochemical results, and on a previously published detailed analysis of Manduca embryogenesis, we conclude that CAP2 is probably released from a specific set of identified neurosecretory cells in the abdominal VNC to modulate embryonic gut activity at 75-80% of embryo development during ingestion of the extra-embryonic yolk.  相似文献   

12.
Park CW  Kim JH  Kim KM  Hwang JS  Kang SW  Kang HS  Cho BP  Yu CH  Kim HR  Lee BH 《Peptides》2004,25(11):1891-1897
Brain-derived neurotrophic factor-like neuropeptide is produced in the brain of the silk moth, Bombyx mori. Immunocytochemical studies of brain and retrocerebral complex of larvae, prepupae, pupae and adults showed that four pairs of median neurosecretory cells and six pairs of lateral neurosecretory cells which had different immunoreactivities to BDNF peptide. Day-1 adult brains showed no evidence of neurons stained by anti-BDNF antibodies. Those reactivities, which were much stronger in median cells than in lateral cells, were the weakest in an earliest larval stage and a latest pupal stage but the strongest in late larval stage. Median neurosecretory cells projected their axons into the contralateral corpora allata by decussation in the median region, nerve corpora cardiaca (NCC) I, and nerve corpora allata (NCA) I, whereas lateral neurosecretory cells extended their axons to the ipsilateral corpora allata via NCC II and NCA I.  相似文献   

13.
Summary In the abdominal ganglia of the turnip moth Agrotis segetum, an antibody against the cockroach neuropeptide leucokinin I recognizes neurons with varicose fibers and terminals innervating the perisympathetic neurohemal organs. In the larva, the abdominal perisympathetic organs consist of a segmental series of discrete neurohemal swellings on the dorsal unpaired nerve and the transverse nerves originating at its bifurcation. These neurohemal structures are innervated by varicose terminals of leucokinin I-immunoreactive (LKIR) fibers originating from neuronal cell bodies located in the preceding segment. In the adult, the abdominal segmental neurohemal units are more or less fused into a plexus that extends over almost the whole abdominal nerve cord. The adult plexus consists of peripheral nerve branches and superficial nerve fibers beneath the basal lamina of the neural sheath of the nerve cord. During metamorphosis, the LKIR fibers closely follow the restructuration of the perisympathetic organs. In both larvae and adults the LKIR fibers in the neurohemal structures originate from the same cell bodies, which are distributed as ventrolateral bilateral pairs in all abdominal ganglia. The transformation of the series of separated and relatively simple larval neurohemal organs into the larger, continuous and more complex adult neurohemal areas occurs during the first of the two weeks of pupal life. The efferent abdominal LKIR neurons of the moth Agrotis segetum thus belong to the class of larval neurons which persist into adult life with substantial peripheral reorganization occurring during metamorphosis.  相似文献   

14.
Woodruff EA  Broadie K  Honegger HW 《Peptides》2008,29(12):2276-2280
Numerous neurosecretory cells are known to secrete more than one peptide, in both vertebrates and invertebrates. These co-expressed neuropeptides often originate from differential cleavage of a single large precursor, and are then usually sorted in the regulated pathway into different secretory vesicle classes to allow separable release dynamics. Here, we use immuno-gold electron microscopy to show that two very different neuropeptides (the nonapeptide crustacean cardioactive peptide (CCAP) and the 30 kDa heterodimeric bursicon) are co-packaged within the same dense core vesicles in neurosecretory neurons in the abdominal ganglia of Periplaneta americana. We suggest that this co-packaging serves a physiological function in which CCAP accelerates the distribution of bursicon to the epidermis after ecdysis to regulate sclerotization of the newly formed cuticle.  相似文献   

15.
Neuropeptides are important controlling agents in animal physiology. In order to understand their role and the ways in which neuropeptides behave and interact with one another, information on their time and sites of expression is required. We here used a combination of MALDI-TOF and ESI-Q-TOF mass spectrometry to make an inventory of the peptidome of different parts (ganglia and nerves) of the central nervous system from the desert locust Schistocerca gregaria and the African migratory locust Locusta migratoria. This way, we analysed the brain, suboesophageal ganglion, retrocerebral complex, stomatogastric nervous system, thoracic ganglia, abdominal ganglia and abdominal neurohemal organs. The result is an overview of the distribution of sixteen neuropeptide families, i.e. pyrokinins, pyrokinin-like peptides, periviscerokinins, tachykinins, allatotropin, accessory gland myotropin, FLRFamide, (short) neuropeptide F, allatostatins, insulin-related peptide co-peptide, ion-transport peptide co-peptide, corazonin, sulfakinin, orcokinin, hypertrehalosaemic hormone and adipokinetic hormones (joining peptides) throughout the locust neuroendocrine system.  相似文献   

16.
Injections of haemolymph, organ extracts and various other substances, as well as in vitro experiments, show that ovary and oviduct extracts on the one hand, and dibutyryl cyclic AMP on the other, enhance ovulation, whereas parturition is stimulated by extracts of the brain, thoracic ganglionic mass, nerve XVII, different parts of the genital apparatus and perhaps proctolin. On the contrary, the proximal neurohaemal organs (corpus cardiacum and perisympathetic organs) appear to contain a substance inhibiting parturition. Lastly, normal intact flies cannot respond to extracts facilitating parturition in decapitated flies. Neuromuscular junctions probably containing peptides and neurotransmitters are described in the muscles of the ovaries, oviducts and the vaginal aperture. Other junctions containing neurotransmitters only are present in uterine and intersegmental muscles. The neurohaemal areas of nerve XVII contain 3 types of peptidergic terminals. From our overall results it is concluded that ovulation is regulated by neurosecretory products released at neuromuscular junctions in the ovaries and oviducts. Parturition control is more complicated. A first neurohormone (parturition-stimulating hormone) appears to be produced in the nerve centres and released in neurohaemal areas located on nerve XVII in the vicinity of the uterus; it enhances the contraction of this organ. A second neurohormone, the parturition-inhibiting hormone may be released in the corpora cardiaca and the median perisympathetic organ. A cephalic nervous factor might exert inhibitory action.  相似文献   

17.
The morphology and position of putative neurohemal areas in the peripheral nervous system (ventral nerve cord and retrocerebral complex) of the cricket Gryllus bimaculatus are described. By using antisera to the amines dopamine, histamine, octopamine, and serotonin, and the neuropeptides crustacean cardioactive peptide, FMRFamide, leucokinin 1, and proctolin, an extensive system of varicose fibers has been detected throughout the nerves of all neuromeres, except for nerve 2 of the prothoracic ganglion. Immunoreactive varicose fibers occur mainly in a superficial position at the neurilemma, indicating neurosecretory storage and release of neuroactive compounds. The varicose fibers are projections from central or peripheral neurons that may extend over more than one segment. The peripheral fiber varicosities show segment-specific arrangements for each of the substances investigated. Immunoreactivity to histamine and octopamine is mainly found in the nerves of abdominal segments, whereas serotonin immunoreactivity is concentrated in subesophageal and terminal ganglion nerves. Immunoreactivity to FMRFamide and crustacean cardioactive peptide is widespread throughout all segments. Structures immunoreactive to leucokinin 1 are present in abdominal nerves, and proctolin immunostaining is found in the terminal ganglion and thoracic nerves. Codistribution of peripheral varicose fiber plexuses is regularly seen for amines and peptides, whereas the colocalization of substances in neurons has not been detected for any of the neuroactive compounds investigated. The varicose fiber system is regarded as complementary to the classical neurohemal organs.  相似文献   

18.
The organization of identified neurosecretory cell groups in the larval brain of the tobacco hornworm, Manduca sexta, was investigated immunocytologically. Computer-assisted three-dimensional reconstruction was used to examine the architecture of the neurosecretory cell groups. The group III lateral neurosecretory cells (L-NSC-III) which produce the prothoracicotropic hormone are located dorsolaterally in the protocerebrum and extend axons medially that decussate to the contralateral lobe prior to exiting the brain through the nervi corporis cardiaci I + II. The group IIa2 medial neurosecretory cells (M-NSC IIa2) are located anteriorly in the medial dorsal protocerebrum. The axons of these cells also exit the brain via the contralateral nervi corporis cardiaci I + II. However, their axons traverse a different pathway through the brain from that of the L-NSC III axons. Each of the cell groups possesses elaborate dendrites with terminal varicosities. The dendrites can be classified into specific fields based upon their location and projection pattern within the brain. The dendrites for these two neurosecretory cell groups overlap in specific regions of the protocerebral neuropil. After the axons of these neurosecretory cells exit the brain through the retrocerebral nerve, they innervate the corpus allatum where they arborize to form neurohemal terminals in strikingly different patterns. The L-NSC III penetrate throughout the glandular structure and the M-NSC IIa2 terminals are restricted to the external sheath. A third group of cerebral neurosecretory cells, the ventromedial neurons (VM) which stain with the monoclonal antibody to prothoracicotropic hormone in Manduca, are located anteriorly in the medial region of the brain. The axons of these cells do not exit the brain to the retrocerebral complex, but rather pass through the circumesophageal connectives and ventral nerve cord. These neurons appear to be the same VM neurons that produce eclosion hormone. One dendritic field of the L-NSC III terminates in close apposition to the VM neurons. The distinct morphologies of these neurosecretory cell groups in relation to other cell groups and the distribution of neuropeptides within the neurons suggest that insect neurosecretory cells, like their vertebrate counterparts, may have multiple regulatory roles.  相似文献   

19.
SchistoFLRFamide (PDVDHVFLRF-NH2) is one of the major endogenous neuropeptides of the FMRF-amide family found in the nervous system of the locust,Schistocerca gregaria. To gain insights into the potential physiological roles of this neuropeptide we have examined the distribution of SchistoFLRFamide-like immunoreactivity in the ventral nervous system of adult locusts by use of a newly developed N-terminally specific antibody. SchistoFLRFamide-like immunoreactivity in the ventral nerve cord is found in a subgroup of the neurones that are immunoreactive to an antiserum raised against bovine pancreatic polypeptide (BPP). In the suboesophageal ganglion three groups of cells stain, including one pair of large posterior ventral cells. These cells are the same size, in the same location in the ganglion and have the same branching pattern as a pair of BPP immunoreactive cells known to innervate the heart and retrocerebral glandular complex of the locust. In the thoracic and abdominal ganglia two and three sets of cells, respectively, stain with both the SchistoFLRFamide and BPP antisera. In the abdominal ganglia the immunoreactive cells project via the median nerves to the intensely immunoreactive neurohaemal organs.  相似文献   

20.
The peptidome of the central nervous system of adult cabbage root fly, Delia radicum (L) was investigated using matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Over twenty neuropeptides were identified from three different tissue sources, the combined brain/suboesophageal ganglion (SOG), the retrocerebral complex, and the thoracic-abdominal ganglion (TAG). A number of peptides were identified in all three tissues, including allatostatins, short neuropeptide F-like peptides, corazonin, a pyrokinin, and a myosuppressin. Adipokinetic hormone was restricted to the retrocerebral complex. Other peptides, including FMRFamides and sulfakinins were detected only in the brain/SOG and TAG. Some peptides, notably myoinhibitory peptides and tachykinins, which have been identified in other fly species, were not detected in any tissue sample. This study has structurally characterized for the first time, the neuropeptides from adult D. radicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号