首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Herpesviruses are the second leading cause of human viral diseases. Herpes Simplex Virus types 1 and 2 and Varicella-zoster virus produce neurotropic infections such as cutaneous and genital herpes, chickenpox, and shingles. Infections of a lymphotropic nature are caused by cytomegalovirus, HSV-6, HSV-7, and Epstein-Barr virus producing lymphoma, carcinoma, and congenital abnormalities. Yet another series of serious health problems are posed by infections in immunocompromised individuals. Common therapies for herpes viral infections employ nucleoside analogs, such as Acyclovir, and target the viral DNA polymerase, essential for viral DNA replication. Although clinically useful, this class of drugs exhibits a narrow antiviral spectrum, and resistance to these agents is an emerging problem for disease management. A better understanding of herpes virus replication will help the development of new safe and effective broad spectrum anti-herpetic drugs that fill an unmet need. Here, we present the first crystal structure of a herpesvirus polymerase, the Herpes Simplex Virus type 1 DNA polymerase, at 2.7 A resolution. The structural similarity of this polymerase to other alpha polymerases has allowed us to construct high confidence models of a replication complex of the polymerase and of Acyclovir as a DNA chain terminator. We propose a novel inhibition mechanism in which a representative of a series of non-nucleosidic viral polymerase inhibitors, the 4-oxo-dihydroquinolines, binds at the polymerase active site interacting non-covalently with both the polymerase and the DNA duplex.  相似文献   

2.
The coupling of 5-acetoxy-1,1-dimethoxypent-2-ene with cytosine and thymine trimethylsilyl derivatives, as well as the reaction of 5-acetoxy-1-bromopent-2-ene with adenine sodium salt, yielded acyclic analogues of the corresponding nucleosides containing 5-acetoxy groups. They were deprotected with a saturated methanolic solution of ammonia to the target analogues of nucleosides, which were characterized with 1H NMR, IR, and UV spectra.  相似文献   

3.
The human herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, HHV-7 and HHV-8, establish persistent infections with possible recurrence during immunosuppression. HCMV replication is inhibited by the nucleoside analogue ganciclovir (GCV), the compound of choice for the treatment of HCMV diseases and preemptive treatment of infections. The viral UL97 protein (pUL97) which shares homologies with protein kinases and bacterial phosphotransferases is able to monophosphorylate GCV. Homologues of pUL97 are found in HSV (UL13), VZV (ORF47), EBV (BGLF4), HHV-6 (U69), HHV-8 (ORF36) as well as in murine CMV (M97) or rat CMV (R97). Several indolocarbazoles have been reported to be specific inhibitors of pUL97. The protein is important for efficient replication of the virus. Autophosphorylation of pUL97 was observed using different experimental systems. Most recently, it has been shown that pUL97 interacts with the DNA polymerase processivity factor pUL44. Indolocarbazole protein kinase inhibitors are promising lead compounds for the development of more specific inhibitors of HCMV.  相似文献   

4.
In a double-bind controlled study, oral Acyclovir has been compared to a placebo in a series of 39 consecutive patients undergoing bone marrow transplantation. A dose of 200 mg was given every 6 h from day 8 to day 35 after transplantation. Pharmacokinetic studies have shown the good absorption of the drug despite intestinal damage related to chemoradiotherapy or gut graft-versus-host disease (GVHD), there was no sign of toxicity. The protection against herpes simplex virus (HSV) infection was complete in the treated group when compared to the control group even in patients with high anti-HSV antibody titres. The same protection was observed against cytomegalovirus (CMV) infection. The incidence of HSV and CMV was the same in both groups after treatment ended. This study confirms the efficacy of Acyclovir against HSV infection and possibly against CMV infection when it is given prophylactically after bone marrow transplantation.  相似文献   

5.
Abstract

The nucleoside analog Acyclovir (ACV) is used in the treatment of herpes simplex (HSV) and varicella-zoster (VZV) diseases. The possibility to extend the application field of ACV by using the bis[SATE] pronucleotide approach in order to deliver ACVMP inside the cell was investigated. And actually, the title compound has potent anti-hepatitis B activity in cell culture experiments. Here, we also report its synthesis and stability in various media.  相似文献   

6.
Simian varicella virus (SVV) and human varicella-zoster virus (VZV) are closely related viruses that share many structural and functional properties. 5-Substituted 2'-deoxyuridine derivatives (e.g., BVDU, BVaraU) and acyclic guanine nucleoside derivatives (i.e., ACV and GCV) show comparable antiviral efficacy against VZV and SVV in cell culture. In contrast, the novel bicyclic nucleoside analogues (BCNAs) are exquisitely inhibitory to VZV (EC50 in the lower nanomolar range) but completely inactive against SVV. The VZV-encoded thymidine kinase (TK) appeared to be essential for BCNA activation (phosphorylation) and anti-VZV activity. Also SVV TK is able to recognize the BCNAs as substrate, although with a different structure-affinity relationship. Thus, viral TK-catalyzed phosphorylation is necessary but not sufficient for the BCNAs to display antiviral activity. Our data suggest that the eventual target of the BCNAs against VZV is either absent in SVV or, alternatively, is insensitive for the (phosphorylated) BCNAs.  相似文献   

7.
Abstract

Cancer diseases are widely recognised as an important medical problem and killing millions of people in a year. Chemotherapeutic drugs are successful against cancer in many cases and different compounds, including the analogues of natural substances, may be used for anticancer agents. Nucleoside analogues also have become a necessity for the treatment of cancer diseases. Nucleoside, nucleotide and base analogues have been utilised for decades for the treatment of viral pathogens, neoplasms and in anticancer chemotherapy. This review focuses on the different types of nucleosides and their potential role as anticancer agents. It also discusses the nucleoside analogues approved by FDA and in process of approval. The effect of the substitution on the nucleoside analogues and their pharmacological role is also discussed in the review. Owing to the advances in computational chemistry, it concludes with the future advancement and possible outcome of the nucleoside analogues. Also, it depicts the development of heterocyclic nucleoside analogues, explores the QSAR of the synthesised compounds and discusses the 3?D QSAR pharmacophore modelling in order to examine their potential anti-cancer activities.  相似文献   

8.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2),varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and-methenyl derivatives (A-5021 and synguanol) and the 6-membered D-and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5′-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- andL-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

9.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

10.
In order to study the electronic effects of 5-substituents of 2'-fluoro-ara-U on antiviral activity, eight nucleosides were synthesized and screened for their activity. Preliminary in vitro studies revealed that 5-thiocyano-, 5-hydroxy- and 5-formyl-ara-U are moderately active against HSV-1, HSV-2 and VZV, but they are also cytotoxic. None of these showed significant activity against CMV.  相似文献   

11.
Novel phosphoramidates of acyclovir have been prepared and evaluated in vitro against acyclovir-sensitive and -resistant herpes simplex virus (HSV) types 1 and 2 and varicella-zoster virus (VZV). Unlike the parent nucleoside these novel phosphate prodrugs retain antiviral potency versus the ACV-resistant virus strain, suggesting an efficient bypass of the viral thymidine kinase.  相似文献   

12.
The Varicella Zoster Virus (VZV) is a ubiquitous human alpha-herpesvirus that is the causative agent of chicken pox and shingles. Although an attenuated VZV vaccine (v-Oka) has been widely used in children in the United States, chicken pox outbreaks are still seen, and the shingles vaccine only reduces the risk of shingles by 50%. Therefore, VZV still remains an important public health concern. Knowledge of VZV replication and pathogenesis remains limited due to its highly cell-associated nature in cultured cells, the difficulty of generating recombinant viruses, and VZV''s almost exclusive tropism for human cells and tissues. In order to circumvent these hurdles, we cloned the entire VZV (p-Oka) genome into a bacterial artificial chromosome that included a dual-reporter system (GFP and luciferase reporter genes). We used PCR-based mutagenesis and the homologous recombination system in the E. coli to individually delete each of the genome''s 70 unique ORFs. The collection of viral mutants obtained was systematically examined both in MeWo cells and in cultured human fetal skin organ samples. We use our genome-wide deletion library to provide novel functional annotations to 51% of the VZV proteome. We found 44 out of 70 VZV ORFs to be essential for viral replication. Among the 26 non-essential ORF deletion mutants, eight have discernable growth defects in MeWo. Interestingly, four ORFs were found to be required for viral replication in skin organ cultures, but not in MeWo cells, suggesting their potential roles as skin tropism factors. One of the genes (ORF7) has never been described as a skin tropic factor. The global profiling of the VZV genome gives further insights into the replication and pathogenesis of this virus, which can lead to improved prevention and therapy of chicken pox and shingles.  相似文献   

13.
14.
(E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) is a potent inhibitor of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV). Its mechanism of action is based on a specific conversion to its 5'-mono- and 5'-diphosphate derivative by HSV-1- and VZV-encoded thymidine kinase, and after further conversion to its 5'-triphosphate derivative, inhibition of the viral DNA polymerase and eventual incorporation into the viral DNA. Recently, a new structural class of bicyclic pyrimidine nucleoside analogues (designated BCNAs) with highly specific and selective anti-VZV activity in cell culture has been discovered. The compounds need a long alkyl or alkylaryl side-chain at the base moiety for pronounced biological activity. This property makes these compounds highly lipophilic. They are also endowed with fluorescent properties when exposed to light with short UV wavelength. In striking contrast to BVDU, the members of this class of compounds are active only against VZV, but not against any other virus, including the closely related HSV-1, HSV-2 and cytomegalovirus. The most active compounds inhibit VZV replication at subnanomolar concentrations and are not toxic at high micromolar concentrations. The compounds lose their antiviral activity against thymidine kinase (TK)-deficient VZV strains, pointing to a pivotal role of the viral TK in their activation (phosphorylation). Kinetic studies with purified enzymes revealed that the compounds were recognized by VZV TK as a substrate, but not by HSV-1 TK, nor by cytosolic or mitochondrial TK. VZV TK is able to phosphorylate the test compounds not only to their corresponding 5'-mono- but also to their 5'-diphosphate derivatives. These data may readily explain and rationalize the anti-VZV selectivity of the BCNAs. There is no clear-cut correlation between the antiviral potency of the compounds and their affinity for VZV TK, pointing to a different structure/activity relationship of the eventual antiviral target of these compounds. The compounds are stable in solution and, in contrast to BVDU, not susceptible to degradation by thymidine phosphorylase. The bicyclic pyrimidine nucleoside analogues represent an entirely new class of highly specific anti-VZV compounds that should be further pursued for clinical development.  相似文献   

15.
As part of a project to generate a library of nucleosides as potential antiviral agents, a small subset of novel acyclic phosphonic acid nucleosides was prepared. Practical synthetic routes are described for three targets, which were then tested against HIV, hepatitis C virus (HCV), and Dengue virus.  相似文献   

16.
17.
Series of novel acyclic nucleoside phosphonates (ANPs) with various nucleobases and 2-(2-phosphonoethoxy)ethyl (PEE) chain bearing various substituents in β-position to the phosphonate moiety were prepared. The influence of structural alternations on antiviral activity was studied. Several derivatives exhibit antiviral activity against HIV and vaccinia virus (middle micromolar range), HSV-1 and HSV-2 (lower micromolar range) and VZV and CMV (nanomolar range), although the parent unbranched PEE-ANPs are inactive. Adenine as a nucleobase and the methyl group attached to the PEE chain proved to be a prerequisite to afford pronounced antiviral activity.  相似文献   

18.
Prevention of nucleoside loss in bile is physiologically desirable because hepatocytes are the main source of nucleosides for animal cells which lack de novo nucleoside biosynthesis. We have demonstrated a Na+ gradient-energized, concentrative nucleoside transport system in canalicular membrane vesicles (CMV) from rat liver by studying [3H]adenosine uptake using a rapid filtration technique. The Na(+)-dependent nucleoside transporter accepts purine, analogues of purine nucleosides and uridine; exhibits high affinity for adenosine (apparent Km, 14 microM); is not inhibited by nitrobenzylthioinosine or dipyridamole, and is present in CMV but not in rat liver sinusoidal membrane vesicles. Adenosine transport in right side-out CMV was substantially greater than with inside-out CMV. CMV also contain abundant ecto-ATPase and ecto-AMPase (5'-nucleotidase). These ectoenzymes were shown to degrade nucleotides into nucleosides which were conserved by the Na(+)-dependent nucleoside transport system.  相似文献   

19.
Thieno analogues of the potent and selective furo-pyrimidine anti-VZV nucleoside family bearing a p-alkylphenyl side chain have been synthesised and tested for their antiviral activity against Varicella-Zoster virus (VZV). While the alkyl chain analogues were shown to retain full antiviral activity against VZV, these new analogues did not when compared to their furo parent nucleosides.  相似文献   

20.
Herpes simplex virus infections are the cause of significant morbidity, and currently used therapeutics are largely based on modified nucleoside analogs that inhibit viral DNA polymerase function. To target this disease in a new way, we have identified and optimized selective thiazolylphenyl-containing inhibitors of the herpes simplex virus (HSV) helicase-primase enzyme. The most potent compounds inhibited the helicase, the primase and the DNA-dependent ATPase activities of the enzyme with IC50 (50% inhibitory concentration) values less than 100 nM. Inhibition of the enzymatic activities was through stabilization of the interaction between the helicase-primase and DNA substrates, preventing the progression through helicase or primase catalytic cycles. Helicase-primase inhibitors also prevented viral replication as demonstrated in viral growth assays. One compound, BILS 179 BS, displayed an EC50 (effective concentration inhibiting viral growth by 50%) of 27 nM against viral growth with a selectivity index greater than 2,000. Antiviral activity was also demonstrated for multiple strains of HSV, including strains resistant to nucleoside-based therapies. Most importantly, BILS 179 BS was orally active against HSV infections in murine models of HSV-1 and HSV-2 disease and more effective than acyclovir when the treatment frequency per day was reduced or when initiation of treatment was delayed up to 65 hours after infection. These studies validate the use of helicase-primase inhibitors for the treatment of acute herpesvirus infections and provide new lead compounds for optimization and design of superior anti-HSV agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号