首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent placement of major Gram-negative prokaryotes (Superfamily B) on a phylogenetic tree (including, e.g., lineages leading to Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus) has allowed initial insights into the evolution of the biochemical pathway for aromatic amino acid biosynthesis and its regulation to be obtained. Within this prokaryote grouping, Xanthomonas campestris ATCC 12612 (a representative of the Group V pseudomonads) has played a key role in facilitating deductions about the major evolutionary events that shaped the character of aromatic biosynthesis within this grouping. X. campestris is like P. aeruginosa (and unlike E. coli) in its possession of dual flow routes to both L-phenylalanine and L-tyrosine from prephenate. Like all other members of Superfamily B, X. campestris possesses a bifunctional P-protein bearing the activities of both chorismate mutase and prephenate dehydratase. We have found an unregulated arogenate dehydratase similar to that of P. aeruginosa in X. campestris. We separated the two tyrosine-branch dehydrogenase activities (prephenate dehydrogenase and arogenate dehydrogenase); this marks the first time this has been accomplished in an organism in which these two activities coexist. Superfamily B organisms possess 3-deoxy-D-arabino-heptulosonate 7-P (DAHP) synthase as three isozymes (e.g., in E. coli), as two isozymes (e.g., in P. aeruginosa), or as one enzyme (in X. campestris). The two-isozyme system has been deduced to correspond to the ancestral state of Superfamily B. Thus, E. coli has gained an isozyme, whereas X. campestris has lost one. We conclude that the single, chorismate-sensitive DAHP synthase enzyme of X. campestris is evolutionarily related to the tryptophan-sensitive DAHP synthase present throughout the rest of Superfamily B. In X. campestris, arogenate dehydrogenase, prephenate dehydrogenase, the P-protein, chorismate mutase-F, anthranilate synthase, and DAHP synthase are all allosteric proteins; we compared their regulatory properties with those of enzymes of other Superfamily B members with respect to the evolution of regulatory properties. The network of sequentially operating circuits of allosteric control that exists for feedback regulation of overall carbon flow through the aromatic pathway in X. campestris is thus far unique in nature.  相似文献   

2.
3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthases catalyse the first step of the shikimate pathway. Two unrelated DAHP synthase types have been described in plants and bacteria. Two type II (aroA(A2) and aroA(A5)) and one type I DAHP synthase gene (aroA001) were identified from the myxobacterium Stigmatella aurantiaca Sg a15. Inactivation of aroA(A5) leads to a mutant that is impaired in the biosynthesis of aurachins, which are electron transport inhibitors and contain an anthranilate moiety. Feeding of anthranilic acid to the mutant culture restores production of aurachins. Inactivation of aroA(A2) and aroA001 does not impair production of aurachins or other known secondary metabolites of S. aurantiaca Sg a15.  相似文献   

3.
Glyphosate has been used globally as a safe herbicide for weed control. It inhibits 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (AroA), which is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants. A Pseudomonas putida strain, 4G-1, was isolated from a soil heavily contaminated by glyphosate in China. Its AroA-encoding gene (aroA) has been cloned, sequenced, and expressed in Escherichia coli. Phylogenetic analysis revealed that this AroA belongs neither to class I nor to class II AroA enzymes. When compared with E. coli AroA, 4G-1 AroA shows similar values for K(m)[PEP], K(m)[S3P], and specific enzyme activity. Moreover, 4G-1 AroA exhibits high tolerance to glyphosate, which indicates a protein with a high potential for structural and functional studies of AroA in general and its potential usage for the generation of transgenic crops resistant to the herbicide.  相似文献   

4.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 2.5.1.54) catalyzes the first step of the shikimate pathway that finally leads to the biosynthesis of aromatic amino acids phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr). In Corynebacterium glutamicum ATCC 13032, two chromosomal genes, NCgl0950 (aroF) and NCgl2098 (aroG), were located that encode two putative DAHP synthases. The deletion of NCgl2098 resulted in the loss of the ability of C. glutamicum RES167 (a restriction-deficient strain derived from C. glutamicum ATCC 13032) to grow in mineral medium; however, the deletion of NCgl0950 did not result in any observable phenotypic alteration. Analysis of DAHP synthase activities in the wild type and mutants of C. glutamicum RES167 indicated that NCgl2098, rather than NCgl0950, was involved in the biosynthesis of aromatic amino acids. Cloning and expression in Escherichia coli showed that both NCgl0950 and NCgl2098 encoded active DAHP synthases. Both the NCgl0950 and NCgl2098 DAHP synthases were purified from recombinant E. coli cells and characterized. The NCgl0950 DAHP synthase was sensitive to feedback inhibition by Tyr and, to a much lesser extent, by Phe and Trp. The NCgl2098 DAHP synthase was slightly sensitive to feedback inhibition by Trp, but not sensitive to Tyr and Phe, findings that were in contrast to the properties of previously known DAHP synthases from C. glutamicum subsp. flavum. Both Co2+ and Mn2+ significantly stimulated the NCgl0950 DAHP synthase's activity, whereas Mn2+ was much more stimulatory than Co2+ to the NCgl2098 DAHP synthase's activity.  相似文献   

5.
Yan HQ  Chang SH  Tian ZX  Zhang L  Sun YC  Li Y  Wang J  Wang YP 《PloS one》2011,6(5):e19732
Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1(optimized)) at the 5' end. The PparoA1(optimized) gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T(1) progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1(optimized) gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future.  相似文献   

6.
Sun YC  Li Y  Zhang H  Yan HQ  Dowling DN  Wang YP 《FEBS letters》2006,580(5):1521-1527
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase (AroA) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, and is the target of the herbicide glyphosate. Glyphosate tolerance activity of the enzyme could be obtained by natural occurrence or by site-directed mutagenesis. A functional Pseudomonas putida AroA was obtained by co-expression of two protein fragments AroA(P. putida)-N210 and AroA(P. putida)-C212 in Escherichia coli aroA mutant strain AB2829. From sequence analysis, the equivalent split site on E. coli AroA was chosen for further study. The result indicated that functional E. coli AroA could also be reconstituted from two protein fragments AroA(E. coli)-N218 and AroA(E. coli)-C219, under both in vivo and in vitro conditions. This result suggested that the fragment complementation property of this family of enzyme may be general. Additional experiments indicated that the glyphosate tolerance property of AroA could also be reconstituted in parallel with its enzyme activity. The implication of this finding is discussed.  相似文献   

7.
The aroA gene from Pasteurella multocida was cloned by complementation of the Escherichia coli aroA mutant AB2829 with a DNA library constructed in pUC18. The nucleotide sequence of the P. multocida aroA gene indicated an open reading frame encoding a protein of 441 amino acids, which showed a high degree of homology with the amino acid sequences of various other bacterial AroA proteins. The cloned P. multocida aroA gene was inactivated by insertion of a kanamycin-resistance gene and reintroduced by allelic exchange into the chromosome of P. multocida using the suicide vector pJM703.1. The P. multocida aroA mutant was highly attenuated in a mouse model. Mice immunized intraperitoneally with two doses of live P. multocida aroA mutant were completely protected against a lethal parental strain challenge.  相似文献   

8.
The aroA gene of Pasteurella haemolytica serotype A1 was cloned by complementation of the aroA mutation in Escherichia coli K-12 strain AB2829. The nucleotide sequence of a 2.2-kb fragment encoding aroA predicted an open reading frame product 434 amino acids long that shows homology to other bacterial AroA proteins. Several strategies to inactivate aroA were unsuccessful. Gene replacement was finally achieved by constructing a replacement plasmid with aroA inactivated by insertion of a P. haemolytica ampicillin resistance fragment into a unique NdeI site in aroA. A hybrid plasmid was constructed by joining the aroA replacement plasmid with a 4.2-kb P. haemolytica plasmid which encodes streptomycin resistance. Following PhaI methylation, the replacement plasmid was introduced by electroporation into P. haemolytica NADC-D60, a plasmidless strain of serotype 1A. Allelic exchange between the replacement plasmid and the chromosome of P. haemolytica gave rise to an ampicillin-resistant mutant which grew on chemically defined P. haemolytica medium supplemented with aromatic amino acids but failed to grow on the same medium lacking tryptophan. Southern blot analysis confirmed that aroA of the mutant was inactivated and that the mutant was without a plasmid.  相似文献   

9.
Summary The recent placement of major Gramnegative prokaryotes (Superfamily B) on a phylogenetic tree (including, e.g., lineages leading toEscherichia coli, Pseudomonas aeruginosa, andAcinetobacter calcoaceticus) has allowed initial insights into the evolution of the biochemical pathway for aromatic amino acid biosynthesis and its regulation to be obtained. Within this prokaryote grouping,Xanthomonas campestris ATCC 12612 (a representative of the Group V pseudomonads) has played a key role in facilitating deductions about the major evolutionary events that shaped the character of aromatic biosynthesis within this grouping.X. campestris is likeP. aeruginosa (and unlikeE. coli) in its possession of dual flow routes to bothl-phenylalanine andl-tyrosine from prephenate. Like all other members of Superfamily B,X. campestris possesses a bifunctional P-protein bearing the activities of both chorismate mutase and prephenate dehydratase. We have found an unregulated arogenate dehydratase similar to that ofP. aeruginosa inX. campestris. We separated the two tyrosine-branch dehydrogenase activities (prephenate dehydrogenase and arogenate dehydrogenase); this marks the first time this has been accomplished in an organism in which these two activities coexist. Superfamily B organisms possess 3-deoxy-d-arabino-heptulosonate 7-P (DAHP) synthase as three isozymes (e.g., inE. coli), as two isozymes (e.g., inP. aeruginosa), or as one enzyme (inX. campestris). The two-isozyme system has been deduced to correspond to the ancestral state of Superfamily B. Thus,E. coli has gained an isozyme, whereasX. campestris has lost one. We conclude that the single, chorismate-sensitive DAHP synthase enzyme ofX. campestris is evolutionarily related to the tryptophan-sensitive DAHP synthase present throughout the rest of Superfamily B. InX. campestris, arogenate dehydrogenase, prephenate dehydrogenase, the P-protein, chorismate mutase-F, anthranilate synthase, and DAHP synthase are all allosteric proteins; we compared their regulatory properties with those of enzymes of other Superfamily B members with respect to the evolution of regulatory properties. The network of sequentially operating circuits of allosteric control that exists for feedback regulation of overall carbon flow through the aromatic pathway inX. campestris is thus far unique in nature.  相似文献   

10.
Contaminated fresh produce has become the number one vector of nontyphoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of the organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aroA mutant had a significant root colonization defect due to a failure to replicate. AroA is part of the chorismic acid biosynthesis pathway, a central metabolic node involved in aromatic amino acid and siderophore production. Addition of tryptophan or phenylalanine to alfalfa root exudates did not restore aroA mutant replication. However, addition of ferrous sulfate restored replication of the aroA mutant, as well as alfalfa colonization. Tryptophan and phenylalanine auxotrophs had minor plant colonization defects, suggesting that suboptimal concentrations of these amino acids in root exudates were not major limiting factors for Salmonella replication. An entB mutant defective in siderophore biosynthesis had colonization and growth defects similar to those of the aroA mutant, and the defective phenotype was complemented by the addition of ferrous sulfate. Biosynthetic genes of each Salmonella siderophore, enterobactin and salmochelin, were upregulated in alfalfa root exudates, yet only enterobactin was sufficient for plant survival and persistence. Similar results in lettuce leaves indicate that siderophore biosynthesis is a widespread or perhaps universal plant colonization fitness factor for Salmonella, unlike phytobacterial pathogens, such as Pseudomonas and Xanthomonas.  相似文献   

11.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthases are metal-dependent enzymes that catalyse the first committed step in the biosynthesis of aromatic amino acids in microorganisms and plants, the condensation of 2-phophoenolpyruvate (PEP) and d-erythrose 4-phosphate (E4P) to DAHP. The DAHP synthases are possible targets for fungicides and represent a model system for feedback regulation in metabolic pathways. To gain further insight into the role of the metal ion and the catalytic mechanism in general, the crystal structures of several complexes between the tyrosine-regulated form of DAHP synthase from Saccharomyces cerevisiae and different metal ions and ligands have been determined. The crystal structures provide evidence that the simultaneous presence of a metal ion and PEP result in an ordering of the protein into a conformation that is prepared for binding the second substrate E4P. The site and binding mode of E4P was derived from the 1.5A resolution crystal structure of DAHP synthase in complex with PEP, Co2+, and the E4P analogue glyceraldehyde 3-phosphate. Our data suggest that the oxygen atom of the reactive carbonyl group of E4P replaces a water molecule coordinated to the metal ion, strongly favouring a reaction mechanism where the initial step is a nucleophilic attack of the double bond of PEP on the metal-activated carbonyl group of E4P. Mutagenesis experiments substituting specific amino acids coordinating PEP, the divalent metal ion or the second substrate E4P, result in stable but inactive Aro4p-derivatives and show the importance of these residues for the catalytic mechanism.  相似文献   

12.
Considerable enzymological diversity underlies the capacityfor biosynthesis of aromatic amino acids in nature. For thisbiochemical pathway, higher plants as a group exhibit a uniformpattern of pathway steps, compartmentation, and catalytic, physicaland allosteric properties of enzymes. This biochemical patternof higher plants contains a collection of features which arecompletely different from photosynthetic prokaryotes such asthe cyanobacteria. A unicellular representative of the chlorophytealgae, Chlorella sorokiniana, was found to be strikingly similarto higher-plant plastids in possessing the following distinctiveenzymes: a Mn2+-stimulated, dithiothreitol-activated isoenzymeof 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase,a probable bifunctional protein competent as both dehydroquinaseand shikimate dehydrogenase, an allosterically controlled isoenzymeof chorismate mutase, a highly thermotolerant species of prephenateaminotransferase, an NADP+-dependent, tyrosine-inhibited arogenatedehydrogenase, and an arogenate dehydratase. In addition anisoenzyme of DAHP synthase shown in higher plants to be cytosolic,absolutely dependent upon the presence of divalent metals, andable to substitute other sugars for erythrose-4-phosphate, wasalso demonstrated in this alga. A broad-specificity 3-deoxy-D-manno-octulosonate8-phosphate synthase, recently discovered in higher plants,is also present in this Chlorella species. (Received March 25, 1995; Accepted June 14, 1995)  相似文献   

13.
A marine bacterium, Vibrio MB22, has been studied to determine the pattern of feedback regulation of the first enzyme unique to the biosynthesis of the aromatic amino acids, 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. The crude extract was used to study response of the enzyme to various salts as well as possible feedback inhibitors. Ethylenediaminetetraacetic acid was found to be inhibitory to enzyme activity, and only CoCl(2), of the salts tested, allowed full recovery as well as apparent stimulation of the DAHP synthetase activity. The DAHP synthetase activity was inhibited solely by the aromatic amino acids, tyrosine, tryptophan, and phenylalanine, of the possible effectors tested. Further work demonstrated the existence of three isozymes of DAHP synthetase, each primarily inhibited by one of the aromatic amino acids.  相似文献   

14.
Streptomyces antibioticus possesses a tryptophan-inhibitable 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) synthetase whose synthesis is also repressed by L-tryptophan. Studies of the DAHP synthetase obtained by ammonium sulfate fractionation of a crude extract derived from S. Antibioticus revealed that the enzymic activity was only partially inhibited by tryptophan. Inhibition of the DAHP synthetase activity was strongly pH dependent at values below 7.0. A number of tryptophan analogues was noted to inhibit the enzyme; by contrast, other aromatic amino acid end products failed to affect DAHP synthetase activity. Chorismic acid, a key intermediate in aromatic amino acid biosynthesis, was ineffective as an inhibitor when used alone; however, if supplied with L-tryptophan, a further reduction of DAHP synthetase activity (15--25%) was routinely observed.  相似文献   

15.
The biosynthesis of membrane proteins of Pseudomonas aeruginosa was examined using various antibiotics (puromycin, streptomycin, chloramphenicol, tetracycline, and rifampin). Among six major membrane proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the biosynthesis of two membrane proteins (proteins I and II) was found to be unusually resistant to these antibiotics. The biosynthesis of protein I (apparent molecular weight of 6,500) was completely resistant to puromycin, streptomycin, chloramphenicol, and tetracycline at conditions which severely inhibited the biosynthesis of all the other membrane proteins except for protein II. Under the same conditions, the biosynthesis of protein II (apparent molecular weight of 9,000) was also resistant to puromycin, streptomycin, and tetracycline, but was sensitive to chloramphenicol. The effect of rifampin on the biosynthesis of proteins I and II indicated that their messenger RNAs are extremely stable; their functional half-lives are 16 and 8 min for proteins I and II, respectively, in contrast with 2.0 and 3.5 min for the average half-lives of the cytoplasmic and membrane proteins, respectively. Protein II was identified as the lipoprotein of the outer membrane from its amino acid composition and mobility in gel electrophoresis. Protein I is a cytoplasmic membrane protein lacking histidine. From the content of arginine residues, the number of protein I molecules per cell was estimated to be as many as, and most likely more than, that of the lipoprotein (protein II). Therefore, protein I is the most abundant protein in P. aeruginosa.  相似文献   

16.
The first committed step of aromatic amino acid biosynthesis in Salmonella typhimurium was shown to be catalyzed by three isoenzymes of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) synthase. Mutations in each of the genes specifying the isoenzymes were isolated and mapped. aroG, the structural gene for the phenylalanine-inhibitable isoenzyme, was linked to gal, and aroH, the structural gene for the tryptophan-inhibitable isoenzyme, was linked to aroE. aroF, the structural gene for the tyrosine-inhibitable isoenzyme, was linked to pheA and tyrA, which specify the phenylalanine- and tyrosine-specific branch-point enzymes, respectively. The phenylalanine-inhibitable isoenzyme was the predominant DAHP synthase in wild-type cells, and only the tryosine-inhibitable isoenzyme was completely repressed, as well as inhibited, by low levels of its allosteric effector. The DAHP synthase isoenzymes were separated by chromatography on diethylaminoethyl-cellulose with a phosphate gradient which contained enolpyruvate phosphate to protect the otherwise unstable phenylalanine-inhibitable isoenzyme. No cross-inhibition of either the tyrosine- or phenylalanine-inhibitable isoenzyme was observed at inhibitor concentrations up to 1 mM. The tryptophan-inhibitable isoenzyme was partially purified from extracts of a strain lacking the other two isoenzymes and shown to be inhibited about 30% by 1 mM tryptophan. A preliminary study of interference by tryptophan in the periodate-thiobarbiturate assay for DAHP suggested a combined effect of tryptophan and erythrose 4-phosphate, or an aldehydic compound resulting from degradation of erythrose 4-phosphate by periodate.  相似文献   

17.
Acholeplasma laidlawii possesses a biochemical pathway for tyrosine and phenylalanine biosynthesis, while Mycoplasma iowae and Mycoplasma gallinarum do not. The detection of 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonate (DAHP) synthase (EC 4.1.2.15), dehydro-shikimate reductase (EC 1.1.1.25) and 3-enol-pyruvoylshikimate-5-phosphate synthase (EC 2.5.1.19) activities in cell-free extracts established the presence in A. laidlawii of a functional shikimate pathway. L-Phenylalanine synthesis occurs solely through the phenylpyruvate route via prephenate dehydratase (EC 4.2.1.51), no arogenate dehydratase activity being found. Although arogenate dehydrogenase was detected, L-tyrosine synthesis appears to occur mainly through the 4-hydroxyphenylpyruvate route, via prephenate dehydrogenase (EC 1.3.1.12), which utilized NAD+ as a preferred coenzyme substrate. L-Tyrosine was found to be the key regulatory molecule governing aromatic biosynthesis. DAHP synthase was feedback inhibited by L-tyrosine, but not by L-phenylalanine or L-tryptophan; L-tyrosine was a potent feedback inhibitor of prephenate dehydrogenase and an allosteric activator of prephenate dehydratase. Chorismate mutase (EC 5.4.99.5) was sensitive to product inhibition by prephenate. Prephenate dehydratase was feedback inhibited by L-phenylalanine. It was also activated by hydrophobic amino acids (L-valine, L-isoleucine and L-methionine), similar to results previously found in a number of other genera that share the Gram-positive line of phylogenetic descent. Aromatic-pathway-encoded cistrons present in saprophytic large-genome mycoplasmas may have been eliminated in the parasitic small-genome mycoplasmas.  相似文献   

18.
3-Deoxy-d-manno-octulosonate 8-phosphate (KDOP) synthase and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyze similar phosphoenolpyruvate-utilizing reactions. The genome of Neisseria gonorrhoeae contains one gene encoding KDOP synthase and one gene encoding DAHP synthase. Of the two nonhomologous DAHP synthase families known, the N. gonorrhoeae protein belongs to the family I assemblage. KDOP synthase exhibited an ability to replace arabinose-5-P with either erythrose-4-P or ribose-5-P as alternative substrates. The results of periodate oxidation studies suggested that the product formed by KDOP synthase with erythrose-4-P as the substrate was 3-deoxy-d-ribo-heptulosonate 7-P, an isomer of DAHP. As expected, this product was not utilized as a substrate by dehydroquinate synthase. The significance of the ability of KDOP synthase to substitute erythrose-4-P for arabinose-5-P is (i) recognition of the possibility that the KDOP synthase might otherwise be mistaken for a species of DAHP synthase and (ii) the possibility that the broad-specificity type of KDOP synthase might be a relatively vulnerable target for antimicrobial agents which mimic the normal substrates. An analysis of sequences in the database indicates that the family I group of DAHP synthase has a previously unrecognized membership which includes the KDOP synthases. The KDOP synthases fall into a subfamily grouping which includes a small group of DAHP synthases. Thus, family I DAHP synthases separate into two subfamilies, one of which includes the KDOP synthases. The two subfamilies appear to have diverged prior to the acquisition of allosteric-control mechanisms for DAHP synthases. These allosteric control specificities are highly diverse and correlate with the presence of N-terminal extensions which lack homology with one another.3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) and 3-deoxy-d-manno-octulosonate 8-phosphate (KDOP) are analogous seven- and eight-carbon 2-keto-3-deoxy sugars that are synthesized by enzymes which belong to functionally unrelated pathways. DAHP synthase forms DAHP as the acyclic precursor of the aromatic amino acids in bacteria, lower eukaryotes, and plants (3); KDOP synthase is best known for its role in the formation of KDOP as a critical component of the lipopolysaccharide of gram-negative bacteria (37), but its distribution in nature has recently been recognized to be broader (13). Both enzymes catalyze an overall condensation of phosphoenolpyruvate (PEP) with an aldose, i.e., erythrose-4-phosphate (E4P) in the case of DAHP synthase and arabinose-5-phosphate (A5P) in the case of KDOP synthase. The reactions are irreversible and are not aldol-type condensations, which unfortunately has been implied by the Enzyme Commission naming that has been recommended for DAHP synthase.As might be expected from the close structural relationship of A5P and E4P, the reactions are strikingly similar. This similarity is reflected at the level of mechanistic detail (see reference 16 and references therein). DAHP synthase and KDOP synthase, along with enolpyruvoylshikimate 3-phosphate synthase and UDP-N-acetylglucosamine enolpyruvoyl transferase, comprise a small class of PEP-utilizing enzymes that catalyze C—O bond cleavage with respect to the release of Pi from PEP (1, 27). This contrasts with the more familiar nucleophilic attack at the phosphorous atom of PEP that results in P—O bond cleavage by the action of enzymes such as pyruvate kinase (25), PEP carboxylase (34), and PEP carboxykinase (8).In classical studies with Escherichia coli, DAHP synthase (44, 45) and KDOP synthase (41) are specific for E4P and A5P, respectively. In contrast, we found that the KDOP synthase of Neisseria gonorrhoeae possessed the ability to utilize E4P in place of A5P. We addressed the question of whether KDOP synthase of N. gonorrhoeae in the presence of E4P and PEP was able to form DAHP, in which case it would also have the potential to function as a DAHP synthase. The time-dependent cleavage of the product was investigated by the periodate-oxidation-thiobarbituric acid (TBA) assay, and these results allow some speculation on the stereospecific course of the reaction in comparison with the reaction of DAHP synthase.  相似文献   

19.
Polymerase chain reaction (PCR) primers designed from a multiple alignment of predicted amino acid sequences from bacterial aroA genes were used to amplify a fragment of Lactococcus lactis DNA. An 8 kb fragment was then cloned from a lambda library and the DNA sequence of a 4.4 kb region determined. This region was found to contain the genes tyrA, aroA, aroK, and pheA, which are involved in aromatic amino acid biosynthesis and folate metabolism. TyrA has been shown to be secreted and AroK also has a signal sequence, suggesting that these proteins have a secondary function, possibly in the transport of amino acids. The aroA gene from L. lactis has been shown to complement an E. coli mutant strain deficient in this gene. The arrangement of genes involved in aromatic amino acid biosynthesis in L. lactis appears to differ from that in other organisms.The nucleotide sequence data reported in this paper have been submitted to the EMBL, GenBank, and DDBJ Nucleotide Sequence Databanks and have been assigned the accession number X78413  相似文献   

20.
In Pseudomonas aeruginosa the initial enzyme of aromatic amino acid biosynthesis, 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase, has been known to be subject to feedback inhibition by a metabolite in each of the three major pathway branchlets. Thus, an apparent balanced multieffector control is mediated by L-tyrosine, by L-tryptophan, and phenylpyruvate. We have now resolved DAHP synthase into two distinctive regulatory isozymes, herein denoted DAHP synthase-tyr (Mr = 137,000) and DAHP synthase-trp (Mr = 175,000). DAHP synthase-tyr comprises greater than 90% of the total activity. L-Tyrosine was found to be a potent effector, inhibiting competitively with respect to both phosphoenolpyruvate (Ki = 23 microM) and erythrose 4-phosphate (Ki = 23 microM). Phenylpyruvate was a less effective competitive inhibitor: phosphoenolpyruvate (Ki = 2.55 mM) and erythrose 4-phosphate (Ki = 1.35 mM). DAHP synthase-trp was found to be inhibited noncompetitively by L-tryptophan with respect to phosphoenolpyruvate (Ki = 40 microM) and competitively with respect to erythrose 4-phosphate (Ki = 5 microM). Chorismate was a relatively weak competitive inhibitor: phosphoenolpyruvate (Ki = 1.35 mM) and erythrose 4-phosphate (Ki = 2.25 mM). Thus, each isozyme is strongly inhibited by an amino acid end product and weakly inhibited by an intermediary metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号