首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R S Sohal  U T Brunk 《Mutation research》1992,275(3-6):295-304
Mitochondria are the major intracellular producers of O2- and H2O2. The level of oxidative stress in cells, as indicated by the in vivo exhalation of alkanes and the concentration of molecular products of oxy-radical reactions, increases during aging in mammals as well as insects. In this paper, we discuss the relationship between mitochondrial generation of O2- and H2O2, and the aging process. The rate of mitochondrial O2- and H2O2 generation increases with age in houseflies and the brain, heart and liver of rat. This rate has been found to correspond to the life expectancy of flies and to the maximum life span potential (MLSP) of six different mammalian species, namely, mouse, rat, guinea pig, rabbit, pig and cow. In contrast, the level of antioxidant defenses provided by activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione concentration neither uniformly declines with age nor corresponds to variations in MLSP of different mammalian species. It is argued that the rate of mitochondrial O2- and H2O2 generation rather than the antioxidant level may act as a longevity determinant.  相似文献   

2.
3.
Algal cells have developed different strategies to cope with the common environmentally promoted generation of H(2)O(2), which include induction of catalase (CAT) and ascorbate peroxidase (APX), massive H(2)O(2) release in seawater, and synthesis of volatile halocarbons by specific peroxidases. The antioxidant adaptability of the economically important carrageenophyte Kappaphycus alvarezii (Doty) Doty (Gigartinales: Rhodophyta) was tested here against exposure to clofibrate (CFB), a known promoter of peroxisomal beta-oxidation in mammals and plants. Possibly as a consequence of CFB-induced H2O2 peroxisomal production, the maximum concentration of H(2)O(2) in the seawater of red algae cultures was found to occur (120+/-17 min) after the addition of CFB, which was followed by a significant decrease in the photosynthetic activity of PSII after 24 h. Interestingly, 4 h after the addition of CFB, the total SOD activity was about 2.5-fold higher than in the control, whereas no significant changes were observed in lipoperoxidation levels (TBARS) or in CAT and APX activities. The two H(2)O(2)-scavenging enzymes were only induced later (after 72 h), whereupon CAT showed a dose-dependent response with increasing concentrations of CFB. A more pronounced increase of TBARS concentration than in the controls was evidenced when a 50 microM Fe(2+/3+) solution (3:2 ratio) was added to CFB-treated cultures, suggesting that the combination of exacerbated H(2)O(2) levels in the seawater-in this work, caused by CFB exposure-and Fenton-reaction catalyst (ferric/ferrous ions), imposes harsh oxidative conditions on algal cultures. The bulk of data suggests that K. alvarezii possesses little ability to promptly induce CAT and APX compared to the immediately responsive antioxidant enzyme SOD and, to avoid harmful accumulation of H(2)O(2), the red alga presumably releases H(2)O(2) into the surrounding medium as an alternative mechanism.  相似文献   

4.
The capacity of rat liver homogenates and mitochondria to remove H(2)O(2) was determined by comparing their ability to slow fluorescence generated by a H(2)O(2) 'detector' with that of desferrioxamine solutions. H(2)O(2) was produced by glucose oxidase-catalysed glucose oxidation. The capacity to remove H(2)O(2) was expressed as equivalent concentration of desferrioxamine. The method showed changes in the capacity of H(2)O(2) removal after treatment with ter-butylhydroperoxide or glutathione. The H(2)O(2) removal capacity of homogenates and mitochondria from rat liver, heart, and skeletal muscle was compared with their overall antioxidant capacity. For homogenates, the order of both antioxidant and H(2)O(2) removal capacities was liver>heart>muscle. For mitochondria, the order of the antioxidant capacities mirrored that of the homogenates, while the order of the H(2)O(2) removal capacities was heart>muscle>liver. Because H(2)O(2) removal is not only due to H(2)O(2)-metabolizing enzymes, but also to hemoproteins that convert H(2)O(2) into more reactive radicals via Fenton reaction, the higher concentration of cytochromes in mitochondria of cardiac and skeletal muscles can explain the above discrepancy. A higher H(2)O(2) removal capacity was found to be associated with a higher rate of H(2)O(2) release by mitochondria, indicating that the order of H(2)O(2) release rate mirrors that of H(2)O(2) production rate. We suggest that the different capacities of the mitochondria from the three tissues to produce reactive oxygen species are due to differences in the concentration of respiratory mitochondrial chain components in the reduced form.  相似文献   

5.
Previous studies suggest that salicylic acid (SA) plays an important role in influencing plant resistance to ozone (O3). To further define the role of SA in O3-induced responses, we compared the responses of two Arabidopsis genotypes that accumulate different amounts of SA in response to O3 and a SA-deficient transgenic Col-0 line expressing salicylate hydroxylase (NahG). The differences observed in O3-induced changes in SA levels, the accumulation of active oxygen species, defense gene expression, and the kinetics and severity of lesion formation indicate that SA influences O3 tolerance via two distinct mechanisms. Detailed analyses indicated that features associated with a hypersensitive response (HR) were significantly greater in O3-exposed Cvi-0 than in Col-0, and that NahG plants failed to exhibit these HR-like responses. Furthermore, O3-induced antioxidant defenses, including the redox state of glutathione, were greatly reduced in NahG plants compared to Col-0 and Cvi-0. This suggests that O3-induced cell death in NahG plants is due to the loss of SA-mediated potentiation of antioxidant defenses, while O3-induced cell death in Cvi-0 is due to activation of a HR. This hypothesis is supported by the observation that inhibition of NADPH-oxidases reduced O3-induced H2O2 levels and the O3-induced cell death in Cvi-0, while no major changes were observed in NahG plants. We conclude that although SA is required to maintain the cellular redox state and potentiate defense responses in O3 exposed plants, high levels of SA also potentiate activation of an oxidative burst and a cell death pathway that results in apparent O3 sensitivity.  相似文献   

6.
The n-3 polyunsaturated fatty acids (PUFAs) found in fish oil (FO) have been shown to protect against reperfusion arrhythmias, a manifestation of reperfusion injury, which is believed to be induced by the formation of reactive oxygen species (ROS) and intracellular calcium (Ca2+) overload. Adult rats fed a diet supplemented with 10% FO had a higher proportion of myocardial n-3 PUFAs and increased expression of antioxidant enzymes compared with the saturated fat (SF)-supplemented group. Addition of hydrogen peroxide (H2O2) to cardiomyocytes isolated from rats in the SF-supplemented group increased the proportions of cardiomyocytes contracting in an asynchronous manner, increased the rate of Ca2+ influx, and increased the diastolic and systolic [Ca2+]i compared with the FO group. H2O2 exposure increased the membrane fluidity of cardiomyocytes from the FO group. These results demonstrate that dietary FO supplementation is associated with a reduction in the susceptibility of myocytes to ROS-induced injury and this may be related to membrane incorporation of n-3 PUFAs, increased antioxidant defenses, changes in cardiomyocyte membrane fluidity, and the ability to prevent rises in cellular Ca2+ in response to ROS.  相似文献   

7.
During wound healing, the transition from granulation to scar tissue shows a decrease in myofibroblast cellularity. Previous results have correlated the disappearance of these cells with the induction of apoptotic cell death by some unknown stimuli. In contrast, hypertrophic scar appearance after wound healing is thought to be linked to a disorder of apoptotic function which induces myofibroblast persistence in granulation tissue. Oxidative stress being an important mediator of apoptosis, we have evaluated the apoptotic response of normal and pathological wound myofibroblasts (WMyo and HMyo respectively) in their interaction with two oxidative stress inducers: hydrogen peroxide, using a high concentration as a single dose, and sodium ascorbate which induced a continuous release of H2O2 at a low concentration. Our results showed that, according to the H2O2 treatment type, HMyo were more sensitive (after ascorbate treatment) or less sensitive (after H2O2 treatment) when compared to WMyo and Fb. We next assessed the presence of several molecules known to be involved in the antioxidant network protecting cells against H2O2 injury and found HMyo to have a higher level of activity of glutathione peroxidase and a lower level of activity of catalase than WMyo. These results can help explain the contradictory responses of myofibroblasts according to the oxidative stress treatment. This is the first study linking refractory oxidative stress mediated cell death to cellular phenotype in hypertrophic myofibroblasts, and indicates a pivotal role for the antioxidant enzyme system in this type of resistance.  相似文献   

8.
Cells are armed with a vast repertoire of antioxidant defense mechanisms to help prevent the accumulation of oxidative damage. It is becoming increasingly apparent that the cellular adaptive response has an important antioxidant function to counteract oxidative stress. To investigate this adaptive response we assessed the effect of sublethal H2O2 on cell viability, enzymatic activity, and nuclear (nDNA) and mitochondrial DNA (mtDNA) susceptibility to damage and repair in cultured human retinal pigment epithelium (RPE) cells. This nondividing cell type exists in a highly oxidizing microenvironment in vivo. Prior exposure to sublethal H2O2 confirmed an adaptive response, resulting in a greater cellular resistance to subsequent toxic exposures compared to nonadapted RPE (p < 0.05). A greater CAT, GPX, and CuZnSOD enzymatic activity (p < 0.05) and increased nDNA protection (p < 0.05) were also observed. However, there was no adaptive benefit for mtDNA protection or repair in response to oxidative stress. This study confirms a role for the adaptive response as an important antioxidant defense for cells located in inherently oxidizing microenvironments. Furthermore, it identifies that the mitochondria are a weak link in otherwise efficient oxidative stress defenses and that this may contribute to aging and age-related disease.  相似文献   

9.
Nitric oxide (*NO) can act as an antioxidant by directly scavenging reactive free radicals, inhibiting the oxidative chemistry of iron, and signaling the up-regulation of antioxidant enzymes. However, the cellular utility of *NO as an antioxidant requires that constitutive nitric oxide synthase (NOS) be activated rapidly by a signal(s) for oxidant formation. We report here that superoxide (O2*-), added directly as potassium superoxide (KO2), produced a superoxide dismutase-sensitive and hydrogen peroxide-independent stimulation of NOS activity, measured by the conversion of [3H]arginine to [3H]citrulline and nitrite formation, in a synaptic particulate fraction from rat brain cerebral cortex. O2*- produced maximal activation of NOS in the presence of the antioxidant urate and ATP. Stimulation of NOS activity by O2*- was abolished by N-monomethyl-L-arginine and by the Ca2+ chelator EGTA but not by 7-nitroindazole, which would be expected to inhibit neuronal NOS. We propose that limited activation of NOS by O2*- may be an important contributor to brain oxidant defenses and, more generally, a signal for cellular adaptation and survival, although excessive generation of nitrogen oxides would be expected to produce neurotoxicity.  相似文献   

10.
11.
The diving response in marine mammals results in bradycardia and peripheral vasoconstriction, with blood flow redistributing preferentially to nervous and cardiac tissues. Therefore, some tissues are rendered ischemic during a dive; with the first breath after a dive, blood flow to all tissues is reestablished. In terrestrial mammals, reactive oxygen species (ROS) production increases in response to ischemia/reperfusion and oxidative damage can occur. The capacity of marine mammals to tolerate repeated ischemia/reperfusion cycles associated with diving appears to be due to an enhanced antioxidant system. However, it is not known if diving depth and/or duration elicit differences in tissue capacity to produce ROS and antioxidant defenses in marine mammals. The objective of this study was to analyze ROS production, antioxidant defenses and oxidative damage in marine mammal species that perform shallow/short vs. deep/long dives. We measured production of superoxide radical (O2??), oxidative damage to lipids and proteins, activity of antioxidant enzymes, and glutathione levels in tissues from shallow/short divers (Tursiops truncatus) and deep/long divers (Kogia spp.). We found that differences between the diving capacity of dolphins and Kogia spp. are reflected in O2?? production and antioxidant levels. These differences suggest that shallow/short and deep/long divers have distinct mechanisms to successfully maintain redox balance.  相似文献   

12.
13.
Menadione (MQ), a quinone used with cancer chemotherapeutic agents, causes cytotoxicity to endothelial cells (EC). Previous studies have suggested that MQ induces an oxidative stress and dysfunction in EC by either increasing hydrogen peroxide (H(2)O(2)) production or depleting intracellular glutathione (GSH), the main intracellular antioxidant. Since a primary function of EC is to form a barrier to fluid movement into tissues, protecting organs from edema formation and dysfunction, our aim was to see if MQ would cause a barrier dysfunction and to ascertain the mechanism. Using diffusional permeability to fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) as a measure of barrier function, we found that 15 micro M MQ incubated with a bovine pulmonary artery EC (BPAEC) monolayer for 4 h produced a profound barrier failure ( approximately 7-fold increase in permeability) with a parallel fall in glutathione, almost to depletion. These two events were highly correlated. Immunofluorescent imaging showed formation of paracellular holes consistent with a loss or rearrangement of cell-cell and cell-matrix adhesion molecules. H(2)O(2) (100 micro M), a concentration which gave about the same increase in permeability as MQ, only slightly decreased GSH concentration. Antioxidants, such as catalase (CAT) and dimethylthiourea (DMTU), which were able to block the H(2)O(2)-induced changes, had no effect on the MQ-induced permeability and GSH changes, suggesting that H(2)O(2) was not involved in MQ-induced effects. MQ caused a severe EC cytotoxicity as judged by lactate dehydrogenase (LDH) leakage from the EC, whereas H(2)O(2) caused only a minor increase. Also, MQ profoundly inhibited the activities of glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), key thiol enzymes involved in glutathione and ATP metabolism, whereas H(2)O(2) produced only a slight decrease in these activities. We conclude that the cytotoxicity of MQ and resulting barrier dysfunction correlate with GSH depletion and inactivation of key metabolic enzymes, compromising antioxidant defenses, rather than being consistent with H(2)O(2)-mediated oxidative stress.  相似文献   

14.
Oxidative stress-induced calcium signaling in Arabidopsis   总被引:17,自引:0,他引:17       下载免费PDF全文
Rentel MC  Knight MR 《Plant physiology》2004,135(3):1471-1479
Many environmental stresses result in increased generation of active oxygen species in plant cells. This leads to the induction of protective mechanisms, including changes in gene expression, which lead to antioxidant activity, the recovery of redox balance, and recovery from damage/toxicity. Relatively little is known about the signaling events that link perception of increased active oxygen species levels to gene expression in plants. We have investigated the role of calcium signaling in H2O2-induced expression of the GLUTATHIONE-S-TRANSFERASE1 (GST1) gene. Challenge with H2O2 triggered a biphasic Ca2+ elevation in Arabidopsis seedlings. The early Ca2+ peak localized to the cotyledons, whereas the late Ca2+ rise was restricted to the root. The two phases of the Ca2+ response were independent of each other, as shown by severing shoot from root tissues before H2O2 challenge. Modulation of the height of Ca2+ rises had a corresponding effect upon H2O2-induced GST1 expression. Application of the calcium channel blocker lanthanum reduced the height of the first Ca2+ peak and concomitantly inhibited GST1 expression. Conversely, enhancing the height of the H2O2-triggered Ca2+ signature by treatment with L-buthionine-[S,R]-sulfoximine (an inhibitor of glutathione synthesis) lead to enhancement of GST1 induction. This finding also indicates that changes in the cellular redox balance constitute an early event in H2O2 signal transduction as reduction of the cellular redox buffer and thus the cell's ability to maintain a high GSH/GSSG ratio potentiated the plant's antioxidant response.  相似文献   

15.
The present work describes, for the first time, the changes that take place in the leaf apoplastic antioxidant defenses in response to NaCl stress in two pea (Pisum sativum) cultivars (cv Lincoln and cv Puget) showing different degrees of sensitivity to high NaCl concentrations. The results showed that only superoxide dismutase, and probably dehydroascorbate reductase (DHAR), were present in the leaf apoplastic space, whereas ascorbate (ASC) peroxidase, monodehydroascorbate reductase (MDHAR), and glutathione (GSH) reductase (GR) seemed to be absent. Both ASC and GSH were detected in the leaf apoplastic space and although their absolute levels did not change in response to salt stress, the ASC/dehydroascorbate and GSH to GSH oxidized form ratios decreased progressively with the severity of the stress. Apoplastic superoxide dismutase activity was induced in NaCl-treated pea cv Puget but decreased in NaCl-treated pea cv Lincoln. An increase in DHAR and GR and a decrease in ASC peroxidase, MDHAR, ASC, and GSH levels was observed in the symplast from NaCl-treated pea cv Lincoln, whereas in pea cv Puget an increase in DHAR, GR, and MDHAR occurred. The results suggest a strong interaction between both cell compartments in the control of the apoplastic ASC content in pea leaves. However, this anti-oxidative response does not seem to be sufficient to remove the harmful effects of high salinity. This finding is more evident in pea cv Lincoln, which is characterized by a greater inhibition of the growth response and by a higher rise in the apoplastic hydrogen peroxide content, O(2)(.-) production and thiobarbituric acid-reactive substances, and CO protein levels. This NaCl-induced oxidative stress in the apoplasts might be related to the appearance of highly localized O(2)(.-)/H(2)O(2)-induced necrotic lesions in the minor veins in NaCl-treated pea plants. It is possible that both the different anti-oxidative capacity and the NaCl-induced response in the apoplast and in the symplast from pea cv Puget in comparison with pea cv Lincoln contributes to a better protection of pea cv Puget against salt stress.  相似文献   

16.
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.  相似文献   

17.
The primary causes of age-related changes in mitochondrial metabolism are not known. The goal of this study is to document the influence of naturally occurring mtDNA variation on age dependent changes in mitochondrial respiration, hydrogen peroxide (H(2)O(2)) generation and antioxidant defenses in the fly Drosophila simulans. Possible changes include an increase in rates of reactive oxygen species production with age and/or an age dependent decrease in antioxidant response. For this study we have used flies harboring distinct siII and siIII mtDNA types. Previously we have shown that males harboring siII mtDNA had higher rates of mitochondrial H(2)O(2) production from complex III at 11d compared to males with the siIII mtDNA type. Here, we corroborate those results and show that Drosophila harboring the siII and siIII mtDNA types exhibit significantly different patterns of pro-oxidant and antioxidant activities as they age. Flies harboring siII mtDNA had higher rates of mitochondrial H(2)O(2) production and manganese superoxide dismutase activity at 11 and 18d of age than siIII mtDNA harboring flies. Copper-zinc superoxide dismutase activity increased from 11 to 25d in siII flies while the accumulation of oxidized glutathione did not change between 11 and 25d. In contrast, siIII harboring flies showed an age dependent increase in H(2)O(2) production, reaching higher production rates on day 25 than that observed in siII flies. Copper-zinc superoxide dismutase activities did not change between 11 and 25d while the oxidized glutathione accumulation increased with age. The results show antioxidant levels correlate with pro-oxidant levels in siII but not siIII flies. These results demonstrate our ability to correlate mtDNA variation with differences in whole mitochondrial physiology and individual complex biochemistry.  相似文献   

18.
19.
Paradoxically, in eukaryotic cells, hydrogen peroxide (H(2)O(2)) accumulates in response to oxygen deprivation (hypoxia). The source of H(2)O(2) under hypoxia varies according to the species, organs, and tissue. In non-photosynthetic tissues, H(2)O(2) is mainly produced by activation of NAD(P)H-oxidases or by disruption of the mitochondrial electron transport chain (m-ETC). This study showed that hypoxia, and inhibitors of respiration like potassium cyanide (KCN) and sodium nitroprusside (SNP), trigger the production of H(2)O(2) in grapevine buds. However, diphenyleneiodonium, an inhibitor of NAD(P)H-oxidase, did not reduce the H(2)O(2) levels induced by KCN, suggesting that, under respiratory stress, H(2)O(2) is mainly produced by disruption of the m-ETC. On the other hand, γ-aminobutyric acid (GABA), a metabolite that in plants alleviates oxidative stress by activating antioxidant enzymes, reduced significantly the levels of H(2)O(2) induced by KCN and, surprisingly, repressed the expression of genes encoding antioxidant enzymes such as ASCORBATE PEROXIDASE (VvAPX), GLUTATHIONE PEROXIDASE (VvGLPX), SUPEROXIDE DISMUTASE (VvSOD), and one of the CATALASE isoforms (VvCAT1), while VvCAT2 was upregulated. In contrast to GABA, hypoxia, H(2)O(2), and ethylene increased dramatically the expression of genes encoding antioxidant enzymes and enzymes of the alternative respiratory pathway such as ALTERNATIVE NADH-DEHYDROGENASES (VvaNDs) and ALTERNATIVE OXIDASES (VvAOXs). Hence, it is concluded that H(2)O(2) production is stimulated by respiratory stress in grapevine buds, that H(2)O(2) and ethylene act as signalling molecules and activate genes related to the antioxidant defence system, and finally that GABA reduces H(2)O(2) levels by up-regulating the expression of VvCAT2.  相似文献   

20.
Procyanidin B2 (epicatechin-(4beta-8)-epicatechin), which is present in grape seeds, apples, and cacao beans, has antioxidant properties. We investigated the mechanism of preventive action of procyanidin B2 against oxidative DNA damage in human cultured cells and isolated DNA. Procyanidin B2 inhibited the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the human leukemia cell line HL-60 treated with an H2O2-generating system. In contrast, a high concentration of procyanidin B2 increased the formation of 8-oxodG in HL-60 cells. Experiments with calf thymus DNA also revealed that procyanidin B2 decreased 8-oxodG formation by Fe(II)/H2O2, whereas procyanidin B2 induced DNA damage in the presence of Cu(II), and H2O2 extensively enhanced it. An electron spin resonance spin trapping study utilizing 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO) demonstrated that procyanidin B2 decreased the signal of M4PO-OH from H2O2 and Fe(II), whereas procyanidin B2 enhanced the signal from H2O2 and Cu(II). As an antioxidant mechanism, UV-visible spectroscopy showed that procyanidin B2 chelated Fe(II) at equivalent concentrations. As a pro-oxidant property, we examined DNA damage induced by procyanidin B2, using 32P-labeled DNA fragments obtained from genes relevant to human cancer. Our results raise the possibility that procyanidin B2 exerts both antioxidant and pro-oxidant properties by interacting with H2O2 and metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号