首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carotenoid photobleaching induced by photosystem II action wasstudied using membrane fragments of the blue-green alga Anabaenavariabilis. Special attention was paid to the action of O2. Carotenoid photobleaching elicited by carbonyl cyanide m-chlorophenylhydrazone(CCCP) depended on O2. However, the addition of H2O2, sodiumsilicotungstate or potassium ferricyanide (Ferri), an electronacceptor for reaction center II action, removed the O2-dependency.These results indicate that O2 acts as the electron acceptorfor this reaction. When both CGCP and Ferri were present, a short illumination(0.25 sec) caused a rapid photobleaching followed by a slowrecovery in the subsequent dark period. The spectrum of theabsorption decrease in the light was identical with that ofthe absorption increase in the subsequent dark, indicating thata reversible process is involved in the carotenoid photobleaching.The size in the dark recovery relative to the light bleachingbecame larger under anaerobic conditions and smaller under higherpartial pressure of O2. The reuslts were interpreted as indicatingthat O2 does not function in the primary process including areversible bleaching step, but is involved in the slow and irreversiblebleaching process. (Received April 3, 1978; )  相似文献   

2.
The effects of deuterium oxide (D2O) on light-induced lipidperoxidation and carbonylcyanide m-chlorophenylhydrazone (CCCP)-inducedcarotenoid photobleaching were examined in isolated chloroplastfragments. D2O stimulated the lipid peroxidation in the presenceof CCCP or methyl viologen as well as in their absence. Carotenoidphotobleaching was also enhanced by D2O. These results led tothe conclusion that the lipid peroxidation and part of the carotenoidphotobleaching were induced by the singlet molecular oxygenbecause D2O prolongs its lifetime. (Received June 23, 1978; )  相似文献   

3.
Detached leaves of white clover (Trifolium repens L.) were keptfor 1 h under various conditions of temperature, oxygen concentrationand light intensity. Rates of photosynthesis were measured whereappropriate and then ribulosebisphosphate carboxylase oxygenase(RuBPCO) was extracted rapidly and its initial activity measuredimmediately. The extracted activity increased with increased intensity ofillumination of the leaves. Where leaves were pretreated atlow light intensity, the lower the temperature of the leavesthe higher the extracted activity of RuBPCO. At high light intensitytemperature did not affect the activity of subsequently extractedRuBPCO but the light intensity which was necessary for maximumactivity increased with temperature. Activity of RuBPCO fromleaves pretreated in the dark was least when CO2 was low andtemperature high. Leaves, pretreated at low temperatures andhigh light intensity in 20% O2, yielded higher activity in extractsthan leaves pretreated under similar conditions but in 2% O2.A relatively weak temperature response of photosynthesis atlow irradiances was associated with a decrease in extractableRuBPCO activity with increasing temperature. A strong temperaturedependence of the oxygen inhibition of photosynthesis was associatedwith lower extractable RuBPCO activity in leaves pretreatedat low oxygen concentration at low temperatures. With leavesfrom plants grown at low temperatures prior to treatment ofleaves, oxygen inhibition of photosynthesis was less temperaturedependent and activity of RuBPCO in extracts was not decreasedby low O2 at low temperatures. Differences in the activationof RuBPCO appear to influence photosynthesis and account foran absence of oxygen inhibition of photosynthesis at low temperaturesin plants grown in warm conditions. Key words: Ribulosebisphosphate carboxylase oxygenase activation, Photosynthesis, Temperature, O2 effect, White clover  相似文献   

4.
Oxygen enhanced photosynthetic 14CO2 fixation in Anacystis nidulanscells. Results obtained under different conditions revealedthe following properties of the oxygen enhancement:
  1. The enhancement was most significant at ca. 10% O2. Furtherincrease in oxygen concentration decreased the enhancing effect.The rate under 100% O2 was equivalent to or a little higherthan that under N2 gas.
  2. b) With the increase in CO2 concentration,the magnitude ofthe enhancing effect decreased. No oxygen enhancementwas observedwhen the CO2 concentration. was raised to 9,000ppm.
  3. c) The enhancement was observed only at high light intensities.No enhancement was observed when the rate of photosynthesiswas limited by light intensity.
  4. Ribulose 1,5-diphosphate (RuDP)carboxylase activity was demonstratedin the extract obtainedfrom A. nidulans cells. We also foundthat the RuDP carboxylaseactivity in this extract was competitivelyinhibited by oxygen.
  5. Based on the above-mentioned results, the possible mechanismunderlying the observed enhancing effect of oxygen was discussed.
(Received May 10, 1976; )  相似文献   

5.
The light-induced oxygen evolution, photoreduction of 2,6-dichlorophenolindophenol (DPIP) and carotenoid photobleaching induced by carbonylcyanide m-chlorophenylhydrazone (CCCP) were investigated withspinach chloroplast fragments in the presence of H2O2. Oxygenevolution in the presence of H2O2 was not inhibited by CCCPand was only partially inhibited by 5 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU) which completely inhibited the Hill reaction with DPIP.The degree of inhibition by DCMU was decreased by a simultaneousaddition of CCCP. Carotenoid photobleaching in the presenceof CCCP was stimulated by H2O2. The CCCP-induced carotenoidphotobleaching was completely inhibited by DCMU. However, itwas only partially inhibited by DCMU in the presence of H2O2.These data indicate that H2O2 donates electrons at a site betweenthe CCCP-sensitive site and the reaction center of photosystemII and is reduced at a site between the DCMU-blocked site andthe reaction center of photosystem II. 1Present address: Department of Biology, Kyushu Dental College,Kitakyushu 803, Japan. (Received June 20, 1974; )  相似文献   

6.
SAMISH  Y.; KOLLER  D. 《Annals of botany》1968,32(4):687-694
An estimate of photorespiration is obtained from the relationshipbetween the net exchange of CO2 of the leaf and the internalCO2 concentration, i.e. within the mesophyll intercellular spaces.The latter is obtained by calculation, taking into account thecombined epidermal and boundary-layer resistances between thebulk atmosphere and the mesophyll intercellular spaces. Thelinear part of this relationship (at low CO2 concentrations)is extrapolated to zero internal concentration, at which noneof the intercellular photorespired CO2 is available for reassimilation.The calculated output of CO2 under such conditions providesan estimate of photorespiration, but, by failing to take intoaccount intracellular reassimilation of photorespired CO2 underestimatesactual photorespiration. As the slope of this linear relationshiprepresents the mesophyll (intracellular) resistance to CO2 uptake,this procedure was used to recalculate published data on effectsof light intensity and of oxygen concentration on net photosynthesis.The analysis showed that increased oxygen concentration anddecreased light intensity reduced photosynthesis largely byincreasing mesophyll resistance to CO2 uptake. It is suggestedthat the CO2 compensation point () is a function of both photorespiration(L) and mesophyll resistance (rm): = L. rm.  相似文献   

7.
Scenedesmus species D3 (GAFFRON's strain) cultured in a mediumcontaining boiled extract of carrot root was found to be ableto absorb molecular hydrogen in the presence of MB or nitriteas a hydrogen acceptor in the dark under H2-atmosphere and alsoto carry out photoreduction in the presence of CO2 and the oxyhydrogenreaction in the presence of oxygen without the dark period ofadaptation which was required for the appearance of these activitiesin the cells grown in an inorganic medium. At the light intensity exceeded a certain threshold, transitionfrom photoreduction to normal photosynthesis occurred, but theabsorption of hydrogen by the cells cultured in a carrot mediumwas resumed upon return to low light intensity. 1 Dedicated to Prof. H. TAMIYA on the occasion of his 60th birthday.Aided in part by a grant from the scientific fund of the Ministryof Education. Contribution No. 132 from the Department of Biology,Faculty of Science, Kyushu University. (Received January 12, 1963; )  相似文献   

8.
The relative requirement of N and P (the optimum N:P ratio)by Dunaliella tertiolecta, Phaeodactylum tricornutum, Prymnesiumparvum and Thalassiosira pseudonana was studied under variouslight intensities and spectra. The ratio was determined as theratio of the minimum cell N and P concentrations (q0N and q0pwhen either nutrient was limiting. The ratio varied widely amongspecies; under light-saturation for growth (116 µEin m–2s–1 it ranged from 11.8 in D. tertiolecta to 36.6 in P.tricornutum. The ratio appeared to be higher at a sub-saturatingintensity (24 µEin m–2 s–1 in all except P.tricornutum, mainly because of higher qoN with little changein qoP. In T. pseudonana QoP also increased, resulting in aninsignificant change in the ratio. The ratio varied little withinthe range of saturation intensity. Light quality affected qoNand qoP as well as the ratio, and the pattern of change variedfrom species to species. The optimum ratio of individual specieswas linearly correlated to their qoN except in P. tricornutum.qoN for all species showed a linear correlation with cell proteinconcentrations irrespective of light conditions. The changeof optimum N:P ratios in the three species thus appears to berelated to changes in cell protein contents. The ratio of carbohydratesto protein remained constant regardless of light intensity orquality and was higher in P-limited cultures. We conclude thatchanges in light regime can strongly influence algal nutrientrequirements and species interrelationships by altering theoptimum cellular N:P ratio.  相似文献   

9.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

10.
Isotope effects of deuterium on photosynthetic metabolism ofcarbon in Chlorella ellipsoidea were investigated. Photosyntheticfixation of 14C in D2O was about a half of that in H2O. Eachstep in the photosynthetic metabolism of carbon was affecteddifferently by D2O in the medium and constitutive D. (Received June 15, 1989; Accepted October 23, 1989)  相似文献   

11.
The effects of deuterium (D) on Chlorella ellipsoidea C-27 wereinvestigated. Cells grown in a medium prepared with deuteriumoxide (D2O) showed pronounced delays in cell growth and division;the length of a cell cycle in medium with 100 mol% D2O was morethan 5 times longer than that in medium prepared in H2O Thedelay caused by D2O was not overcome by either indoleaceticacid or kinetin. The biological and ultrastractural characteristicsof deuterated .Chlorella (D-Chlorella) cells were examined.The responses of D-Chlorella to cell wall-digesting enzymesdid not differ from those of normal (H-Chlorella) cells. D-Chlorellacells were enlarged, and cellular components, such as proteins,nucleic acids, lipids and ATP, were present in larger quantitiesthan those in H-cells. The chloroplast of D-Chlorella was enlarged,but the levels of component photosynthetic pigments were significantlyreduced. By contrast, mitochondria of D-Chlorella were smallerthan those of H-cells. These changes in levels of cellular componentsand in the sizes of organelles seem to be unique to deuteration. (Received May 13, 1992; Accepted July 28, 1992)  相似文献   

12.
暗期干扰对环带锦斑蛾滞育诱导的影响   总被引:1,自引:0,他引:1  
在短日照条件下,环带锦斑蛾Pseudopidorus fasciata以4龄幼虫进入冬季滞育,其滞育诱导的临界暗长为10.5 h。本文系统测试了暗期干扰实验[即在暗期采用单一的光(亦称光脉冲)干扰光周期反应的实验]对环带锦斑蛾幼虫滞育的抑制影响。幼虫孵化后在25℃,短日照L9∶D15(光9 h∶暗15 h),L10∶D14、L11∶D13及L12∶D12暗期的不同时段给予1 h或30 min光脉冲干扰。结果表明: 滞育是否被抑制主要取决于暗期的长度,当光脉冲干扰前的暗长(D1)或光脉冲干扰后的暗长(D2)超过临界暗长(10.5 h)时,100%的幼虫被诱导进入滞育;当D1D2都短于(或等于)临界暗长时,滞育不同程度被抑制,抑制的效果则取决于所干扰的光周期、光脉冲的长度和光脉冲落入的位点。结果说明该虫滞育诱导的暗期干扰反应是基于临界暗长的时间测量。  相似文献   

13.
LAMONT  B.; PERRY  M. 《Annals of botany》1977,41(1):203-209
The high osmotic concentration of the viscid layer and non-volatilegermination inhibitors cannot account for the prolonged dormancyof the seeds of Amyema preissii while they remain within theintact fruit. Once excised, however, germination could not beprevented by depriving the seed of an external supply of water,oxygen or light. Elongation of the hypocotyl, bearing the primaryhaustorium of the young seedling, was enhanced by conditionsthat favoured photosynthesis as well as respiration. The pericarpis considered to prevent germination by acting as a barrierto influx of exogenous O2 (critical under dark conditions),and efflux of endogenous CO2 (critical under light conditions).  相似文献   

14.
ERRATA     
Please replace the paragraph Culture of material in Materialand method on page 574 (Fujii, Shimmen and Tazawa), Vol. 19,No. 4 with the following corrected paragraph. Materials and methods Culture of material Spirogyra sp. used for the experiments was collected in theriver Kamogawa in Kyoto. Cylindrical cells composing the filamentwere 55 µm in diameter and 100–200 µm in length.Each cell usually had one spiral ribbon-like chloroplast. Thealga was cultured in slightly modified Reichardt's medium (27),1000 ml of which contained: 200 mg KNO3, 20 mg K2HPO4, 10mgH3BO3, 6.6 mg FeSO4?7H2O, 25 mg Na2EDTA (ethylenediamine tetraaceticacid disodium salt), 200 mg NaHCO3, 50 mg CaSO4?2H2O, 10mg MgSO4?7H2O,0.5 mg ZnSO4?7H2O, 5mg MnCl2?4H2O, 24 µg Na2MoO4, 2 µgCoCl2?6H2O, 500 mg Tris. The pH was adjusted to 7.4 with HCl.The alga was cultured in a Petri dish at 20?1?C under a 16 hr–8hr light-dark regime. The light intensity was about 2000 lux.Under such conditions, the cells divided once a day fairly synchronously. Experimental solutions Artificial pond water (APW) containing 0.1 mM each of KCl, NaCland CaCl2  相似文献   

15.
Relationship between Photosynthesis and Plasmalemma Transport   总被引:1,自引:0,他引:1  
Hansen, U.-P., Kolbowski, J. and Dau, H. 1987. Relationshipbetween photosynthesis and plasmalemma transport.—J. exp.Bot. 38: 1965–1981. The yield of chlorophyll-fluorescence (F), of oxygen evolution(PAS, photo-acoustic signal) and the light-induced changes ofplasmalemma potential (V) were measured in the presence of red(633 nm) background light with blue or far-red (720 nm) sinusoidallymodulated actinic light. The kinetic study based on curve-fittingof the measured frequency responses led to the following: theresponse of chlorophyll-fluorescence (F) to blue actinic lightcomprises four time-constants located at 2·7,50,400 and4000 s. Membrane potential (V) displays five time-constants:2· 50, 160±330, —1, 4000 s. These time-constantswere assigned to the reactions involved as follows: from thecomparison of the effects of blue and far-red actinic lightthe time-constants of 2·7 s and 400 s were related tothe plastoquinone pool and to the state-transition controller.The time-constant of 4000 s was not investigated. The complextime-constants of V are known to be related to the controllerof cytoplasmic pH from previous studies. The time-constant of50 s was common to V, F, and PAS. From the sign of the 50 scomponent in F and in PAS (qE-component), the following modelof the light action on membrane transport was developed: theuptake of protons into the inner space of the thylakoids causesan alkalinization of the cytoplasm which slows down the plasmalemmaH+-pump via a substrate effect. Key words: Chlorophyll-fluorescence, frequency responses, kinetic analysis, plasmalemma potential, photo-acoustic effect, proton flux, spinach, state-transitions, thylakoid membrane, time-constants  相似文献   

16.
A comparison of the activity and properties of the enzyme phosphoenolpyruvatecarboxylase (PEPC) was made for plants of Sedum telephium L.grown under low (70 µmol m–2 s–1) or high(500µmol m–2 s–1) PPFD and subjected to varyingdegrees of water stress. Under well-watered conditions onlyplants grown under high PPFD accumulated titratable acidityovernight and the extractable activity of PEPC was almost 2-foldhigher in these plants than in plants grown under low PPFD.Increasing drought stress resulted in a substantial increasein the activity of PEPC extracted both during the light anddark periods and a decrease in the sensitivity to inhibitionby malic acid. The magnitude of these changes was determinedby the severity and duration of drought and by light intensity.A comparison of the kinetic properties of PEPC from severelydroughted plants revealed that plants droughted under high PPFDhad a lower Km for PEP than plants under low PPFD. Additionof 2·0 mol m–3 malate resulted in an increase inthe Km for PEP, with plants draughted under low PPFD havinga significantly higher Km in the presence of malic acid comparedto those under high PPFD. Response to the activator glc-6-P,which lowered the Km for PEP, also varied between plants grownunder the two light regimes. Under well-watered conditions PEPCextracted from plants under high PPFD was more sensitive toactivation by glc-6-P than those under low PPFD. After the severedrought treatment, however, the Km for PEP in the presence ofglc-6-P was similar for enzyme extracted from plants grown underboth light regimes. Soluble sugars and starch were depletedovernight and were both possible sources of substrate for PEPC.With increasing drought, however, the depletion of starch relativeto soluble sugars increased under both light regimes. The propertiesof PEPC and the characteristics of carbohydrate accumulation/depletionare discussed in relation to the regulation of CAM in S. telephiumgrown under different light and watering regimes. Key words: PEP carboxylase, CAM, carbohydrates, Sedum telephium  相似文献   

17.
Environmental Influences on CAM Activity of Cissus quadrangularis   总被引:1,自引:0,他引:1  
Cissus quadrangularis, Vitacea, has a succulent stem and showsCrassulacean Acid Metabolism (CAM). Environmental control ofCAM is shown with respect to water supply, day temperature,and light intensity. C. quadrangularis, under moderate drought,has a high capacity for dark CO2 fixation and high efficiencyof water use (nocturnal transpiration ratio = 8). Severely droughtedplants of C. quadrangularis still show dark CO2 fixation althoughat a reduced rate, which allows a maintenance level metabolism.On the other hand, high temperature and light intensity promoteCAM activity in well-watered plants resulting in luxuriant andfast growth. Data indicate that under natural conditions CAMshould effectively contribute to the successful adaptation ofC. quadrangularis to its environment.  相似文献   

18.
The effects of light on denitrifying activity during growthwere studied in an aerobic photosynthetic bacterium, Roseobacterdenitrificans (formerly Erythrobacter sp. OCh 114). When aerobicallygrown cells were transferred to anaerobic conditions in thepresence of nitrate, this bacterium exhibited denitrifying activity,with either succinate or malate serving as an electron donorin addition to endogenous substrates. The final product of denitrificationwas identified as nitrous oxide (N2O), a result that confirmsthe presence of nitrate and nitrite reductases, but not N2Oreductase, in these cells. Illumination during aerobic growthcaused a marked enhancement of the denitrifying activity. Theactivity increased with increasing intensity of light up to40 mW cm–2 and was over 20 times that in dark-grown cells.Enhancement of denitrifying activity in illuminated cells wasclosely related to increases in levels of components that areinvolved in the denitrifying pathway, namely, nitrate and nitritereductases. Development of a denitrifying system under aerobicconditions and the enhancement of denitrifying ability by lightin Roseobacter denitrificans are unique characteristics, unlikethose of other known denitrifying bacteria. (Received October 29, 1990; Accepted January 17, 1991)  相似文献   

19.
The metabolism of winter rye seedlings (Secale cereale, L. ev.Winter) cultured in 99.8 per cent D2O was investigated. Comparedwith water-grown seedlings, the protein content was much lowerin the D2O-cultured seedlings and the pattern of incorporationof [3H]leucine and [3H]phenylalanine into protein was substantiallydifferent. Seedlings cultured in D2O incorporated [3H]thymidineinto DNA, but did not take up [3H]uridine. The results suggestthat some of the toxic effects of D2O culture on higher plantscan be attributed to a partial block of protein synthesis.  相似文献   

20.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号