首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight endophytic fungi were isolated from roots of the threatened terrestrial orchid, Pecteilis susannae (L.) Rafin. Phylogenetic analysis based on an alignment of internal transcribed spacer regions of nuclear rDNA indicated that seven isolates belonged to the genus Epulorhiza and one to Fusarium. All fungal isolates were cultured with orchid seeds collected from three field sites near Doi Suthep-Pui National Park, Chiang Mai, Thailand. Seed germination and protocorm development were evaluated up to 70 days after sowing. Percent symbiotic seed germination was highest (86.2%) when seeds were cultured with Epulorhiza (CMU-Aug 013). The protocorm development was the most advanced up to stage 2, continued embryo enlargement, or rupture of the testa, and the highest percentage was 17.8% when seeds were cultured with Epulorhiza (CMU-Aug 007). Without fungi, seed germination and protocorm development were 62.1% and 11.1%, respectively. The dependency of P. susannae on fungal symbionts for early seedling development is yet to be determined. Optimizing seed germination and seedling fitness will assist the conservation of this threatened orchid in Thailand.  相似文献   

2.
The rapid loss of native orchid habitat throughout ecologically important areas (e.g., Florida) has prompted researchers to develop appropriate plans for the propagation and reintroduction of many native orchid species. Ideally, symbiotic orchid seed germination methods are utilized in the production of orchid seedlings to be used in plant reintroduction programs. In the current study we (1) describe an efficient symbiotic seed germination protocol to germinate seeds of the rare sub-tropical terrestrial orchid Habenaria macroceratitis; (2) discuss the in vitro fungal specificity demonstrated by this species; and (3) describe the effects of three photoperiods (0/24 h, 16/8 h, 24/0 h L/D) on in vitro symbiotic seed germination of H. macroceratitis. Six fungal mycobionts were isolated from both vegetative and flowering plants of H. macroceratitis from two geographically distinct sites. Symbiotic seed germination percent was highest (65.7%) and protocorm development was most advanced (Stage 2) when seeds were cultured with fungal mycobiont Hmac-310. Seeds of H. macroceratitis demonstrated a degree of specificity toward fungal mycobionts isolated from plants originating from the same site where seed was collected. Continual darkness (0/24 h L/D) inhibited initial seed germination (Stage 1; 17.1%), but stimulated subsequent protocorm development (Stage 2; 53.5%). These findings will aid in developing an efficient symbiotic seed germination protocol for the conservation of this rare Florida terrestrial orchid, and may prove useful in the conservation of other sub-tropical terrestrial orchid species.  相似文献   

3.
石斛属(Dendrobium)植物在种子共生萌发过程中与真菌有着较为专一的共生关系, 为探讨这种共生关系在种间杂交后代上的进化和适应, 深入理解兰科植物和真菌共生关系的形成机制, 该研究利用能有效促进铁皮石斛(Dendrobium officinale)和齿瓣石斛(D. devonianum)种子萌发形成幼苗, 并具有较强专一性的胶膜菌属(Tulasnella)真菌SSCDO-5和瘤菌根菌属(Epulorhiza)真菌FDd1, 开展真菌对铁皮石斛和D. tortile种间杂交种子萌发效应的研究。结果表明, 在真菌与种子共生培养68天时, SSCDO-5菌株和FDd1菌株都能有效地促进杂交种子形成原球茎和幼苗, 两个接菌处理之间无显著差异, 来源于铁皮石斛的SSCDO-5菌株不但没有表现出优势, 反而在杂交石斛幼苗形成率上低于来源于齿瓣石斛的FDd1菌株(SSCDO-5: (22.13 ± 6.62)%; FDd1: (29.53 ± 5.51)%); SSCDO-5菌株和铁皮石斛在幼苗形成和发育阶段的共生专一性并没有在杂交后代上得到遗传或表现, 或者说是杂交打破了这种专一性的共生关系, 使得杂交后代能够和不同的真菌建立新的共生关系。该结果不支持关于共生真菌专一性是石斛属植物杂交后代形成的重要限制因素的假设, 推测石斛属植物在幼苗分化和发育阶段与真菌这种专一性的共生关系是在适应特定生态环境的过程中形成和建立的。  相似文献   

4.
5.
Continuing loss of native orchid habitat has lead to an increased emphasis on orchid conservation. Major obstacles in the production of native orchid seedlings for use in conservation have been: (1) development of efficient and reliable seed germination protocols and (2) an understanding of early seedling growth and development. Effects of six asymbiotic media (Modified Lucke, Murashige & Skoog, Lindemann, Vacin & Went, Malmgren Modified, Knudson C), four exogenous cytokinins (BA, Zea, Kin, 2-iP), and three photoperiods (0/24, 16/8, 24/0 h L/D) were examined on seed germination and early protocorm development of Habenaria macroceratitis, a rare native Florida terrestrial orchid. Finally, the effects of three photoperiods (8/16, 12/12, 16/8 h L/D) on in vitro seedling development were examined. Percent seed germination was highest on both LM and KC after seven weeks culture (LM = 89.1%, KC = 89.2%); however, protocorm development was enhanced on MM after both seven and 16 weeks. Both zeatin and kinetin at 1 μM enhanced seed germination (Zea = 58.1%, Kin = 47.2%). Final percent seed germination (91.7%) and protocorm development (Stage 4) was increased in the absence of light (0/24 h L/D). In␣vitro seedlings cultured under 8/16 h L/D conditions produced the highest number of tubers per seedling (1.06) with the greatest tuber (42.7 μg) and shoot (fwt = 69.5 μg) biomass and tuber diameter (3.1 mm).  相似文献   

6.
In this study mycorrhizal fungi were isolated from the roots of the endemic terrestrial orchid Bipinnula fimbriata. Seven isolates were previously identified as the form-genus Rhizoctonia, a polyphyletic group known to form mycorrhizal associations with Orchidaceae. Two other isolates were included in the study: #793 isolated from Chloraea crispa, and #1325 Rhizoctonia solani, isolated from potato. After morphological and molecular characterization of the nine isolates, they were divided into three groups, Ceratobasidium sp., Tulasnella calospora and Thanatephorus cucumeris, to determine the diversity between isolates. Consensus ITS sequences were used for a blast search on the GenBank database, which confirmed the results of the morphological observations. Once the isolates were identified, an in vitro germination test was done with four plates of oatmeal agar inoculated with each fungus, plus an asymbiotic control. The germination stages of the seeds were recorded 30 days after sowing. All isolates obtained from B. fimbriata, and the isolate #793 from Chloraea crispa, promoted seed germination. However, the isolate #1325 Rhizoctonia solani, which is known as both a pathogen and an orchid symbiont, did not promote germination. This shows that B. fimbriata is associated with more than one mycorrhizal fungus in its habitat and has a broader potential specificity in vitro. The results support the hypothesis that at least one fungal isolate promotes the germination of B. fimbriata, permitting the conservation of this species in ex situ conditions.  相似文献   

7.
Epiphytes constitute over 70% of orchid diversity, but little is known about the functioning of their mycorrhizal associations. Terrestrial orchid seeds germinate symbiotically in soil and leaf litter, whereas epiphytic orchids may be exposed to relatively high light levels from an early stage of development and often produce green seeds. This suggests that seedlings of the two groups of orchids may differ in their responses to light and requirements for mycorrhiza-supplied carbon. The interactive effects of light, exogenous carbon and mycorrhizal status on germination and growth were investigated in vitro using axenic agar microcosms for one tropical epiphyte and three geophytic orchid species. The geophytic species strongly depended on their mycorrhiza for growth and this could not be substituted by exogenous sucrose, whereas the epiphytic species achieved 95% of the mycorrhizal seedling volume when supplied with exogenous sucrose in the dark. Mycorrhiza status strongly interacted with light exposure, enabling germination. Light inhibited or severely reduced growth, especially for the terrestrial orchids in the absence of mycorrhiza. For the first time, this study showed the parallel ecological importance of mycorrhizal fungi in overcoming light inhibition of seed germination and growth in both terrestrial and epiphytic orchids.  相似文献   

8.
Evidence is accumulating for specialized yet evolutionarily dynamic associations between orchids and their mycorrhizal fungi. However, the frequency of tight mycorrhizal specificity and the phylogenetic scale of changes in specificity within the Orchidaceae are presently unknown. We used microscopic observations and PCR-based methods to address these questions in three taxa of nonphotosynthetic orchids within the Hexalectris spicata complex. Fungal ITS RFLP analysis and sequences of the ITS and nuclear LSU ribosomal gene fragments allowed us to identify the fungi colonizing 25 individuals and 50 roots. Thanatephorus ochraceus (Ceratobasidiaceae) was an occasional colonizer of mycorrhizal roots and nonmycorrhizal rhizomes. Members of the Sebacinaceae were the primary mycorrhizal fungi in every Hexalectris root and were phylogenetically intermixed with ectomycorrhizal taxa. These associates fell into six ITS RFLP types labeled B through G. Types B, C, D, and G were found in samples of H. spicata var. spicata, while only type E was found in H. spicata var. arizonica and only type F was found in H. revoluta. These results provide preliminary evidence for divergence in mycorrhizal specificity between these two closely related orchid taxa. We hypothesize that mycorrhizal interactions have contributed to the evolutionary diversification of the Orchidaceae.  相似文献   

9.
10.
兰科植物种子细小,无胚乳,自然条件下需与适宜的内生真菌共生才能萌发。近年来,大量研究结果表明,内生真菌能够为兰科药用植物种子萌发提供必要的碳源、氮源等多种营养物质。本文对内生真菌为兰科药用植物种子提供的营养物质进行总结,并对二者的营养关系进行了综述。  相似文献   

11.
12.
自然条件下,兰科植物需要依赖菌根真菌获得营养才能萌发。本研究对白及根和原球茎中分离的4株菌根真菌(WQ17-33、WQ17-43、JST-3和SL15-7)进行分子鉴定,并评价光照和黑暗条件下不同菌株促白及种子萌发和幼苗生根的效果。结果表明,4个菌株分别隶属于鬼伞属Coprinus、胶膜菌属Tulasnella、腊壳菌属SebacinaSerendipita。在种子萌发前期(未形成叶子)进行暗培养较光照对菌株JST-13和SL15-7处理组原球茎阶段萌发具有显著的促进作用。不同菌株共生萌发效果不同,菌株SL15-7较其他处理原球茎和幼苗发育阶段的萌发率高。菌株JST-13和SL15-7处理组形成的幼苗较其他处理组强壮,定殖的菌丝团也较多,其幼苗生根效果也较对照组好。该研究表明白及可与多种不同类群的菌根真菌菌株形成共生关系,这些真菌在促进白及种子萌发和生根能力方面存在差异。  相似文献   

13.
兰科植物的种子原地和迁地共生萌发技术是近年发展起来的开展兰科植物种子和共生真菌研究的有效方法。该研究对兰属(Cymbidium)附生植物硬叶兰(C. mannii)开展了种子的迁地共生萌发研究, 试图获得其种子萌发的有效真菌。利用硬叶兰成年植株根部周围的树皮、苔藓、枯枝落叶、腐殖质等作为培养基质, 进行种子的共生培养。在培养133天后, 成功地获得了处于不同阶段的已萌发种子、原球茎和幼苗, 并从原球茎中分离得到一种瘤菌根菌属(Epulorhiza)真菌。用所分离到的FCb4菌株和一种从兜唇石斛(Dendrobium aphyllum)分离到的胶膜菌属(Tulasnella) FDaI7菌株和硬叶兰种子在燕麦琼脂培养基上进行共生萌发, 设置不接菌作为对照处理, 以检验FCb4菌株对硬叶兰种子萌发的有效性。经过58天的培养, 不接菌的对照处理中种子没有萌发, 接种FCb4和FDaI7菌株的处理都有很高的种子萌发率, 两种接菌处理在不同光照条件下的种子萌发率均无显著性差异。但暗培养条件下, 种子萌发形成原球茎后, 表现出生长停滞的趋势, 仅有很少的原球茎继续生长达到幼苗阶段, 说明原球茎发育后期与幼苗发育阶段需要光照。在光照条件下, 接种FCb4菌株处理中达到幼苗阶段种子的比例为(25.67 ± 9.27)%, 显著高于接种FDaI7菌株处理的(3.04 ± 2.27)% (W = 56, p = 0.026, Mann-Whitney U-test), 表明此研究中分离到的瘤菌根菌属真菌能有效地促使硬叶兰种子萌发并生长发育到幼苗阶段。  相似文献   

14.
《Mycoscience》2014,55(3):183-189
Study on the dependence of orchids on fungi for seed germination and seedling development provides a mean for understanding the role of fungi in the orchid development process. The epiphytic orchid Coelogyne nervosa endemic to south India is exploited in an unsustainable manner for its therapeutic value. So a protocol for symbiotic seed germination was established for C. nervosa. We isolated a fungus by plating mycorrhizal root discs of the terrestrial orchid Eulophia epidendreae and identified it as Epulorhiza sp., by sequencing the internal transcribed spacer (ITS) regions of the ribosomal RNA gene. Germination of C. nervosa seeds was higher when inoculated with Epulorhiza sp. Uninoculated seeds of C. nervosa ceased to develop soon after the initiation of germination, and the embryo failed to rupture the seed testa. The isolated fungal hyphae entered the germinating seeds either through the pores in-between the integuments, or through the rhizoids. After the fungal establishment (peloton formation) in embryonic cells, the embryo transformed into a protocorm and after 45 days, 66% of the germinated seeds were transformed into protocorms. Nevertheless, promeristem formation occurred only after fungal association. Sixty-three percent of the protocorms developed their first leaf by 90 days and 62% of these produced a second leaf by 120 days after fungal inoculation. All the seedlings in green leaf stage produced roots and contained fungal pelotons. Our results suggest that the Epulorhiza sp. could be successfully used in the in vitro production of C. nervosa for their reintroduction into its natural environment.  相似文献   

15.
Cymbidium aloifolium is a multipurpose economically important epiphytic orchid grows on tree trunk in the primary forests. Its population in natural habitat is downsized due to different anthropogenic activities. A successful attempt was made for asymbiotic immature embryo culture and in vitro mass scale production of plantlets. For successful culture initiation seed pods of various developmental ages, various nutrient media, sucrose concentrations, different quality and quantity of plant growth regulators were surveyed. Immature embryos of 9 months after pollination was successfully germinated on MS medium containing sucrose (2%) (w/v) and α-naphthalene acetic acid (NAA) and benzyl adenine (BA) (3 and 6 μM respectively in combination) within 45 days of culture where 90% germination was recorded. The germinated seeds formed PLBs on the optimum germination medium within two passages. The protocorm like bodies (PLBs) differentiated into rooted plantlets within 3 weeks on regeneration medium containing sucrose (3%), casein-hydrolysate (0.1 gl?1) and BA 3 μM. Amongst the three media studied, optimum regeneration was registered on MS medium where as many as 12 shoot buds developed per explants per subculture of 4 weeks duration. The well rooted plantlets of 6–7 cm long with 3–4 roots were hardened in vitro 3–4 weeks before they were transferred to potting mix. The potted plants were exposed to full sunlight periodically and watered at regular interval. About 70–80% transplants survived after 2 months of potting.  相似文献   

16.
The effects of the triazole compound paclobutrazol on the mycorrhizalfungi and production of droppers (tuber stalks) in three species of terrestrialorchids of southwestern Australia were investigated. Seedlings ofDiuris laxiflora Lindley (bee orchid), Microtismedia R. Br. (common mignonette orchid), and Pterostylissanguinea D. Jones & M. Clements (dark banded greenhood orchid)were cultured symbiotically with specific mycorrhizal fungi invitro. The mycorrhizal fungi of the study species were grown on mediacontaining paclobutrazol at 0, 1.7, 3.4, 10.2, or 17.0 M(corresponding to 0, 0.5, 1.0, 3.0, or 5.0 mgL–1). Paclobutrazol at all concentrations evaluateddecreased the growth rates of the mycorrhizal fungi of M.media and P. sanguinea below that of thecontrol. However, paclobutrazol did not adversely affect the growth of themycorrhizal fungus of D. laxiflora, and low concentrations(1.7 or 3.4 M) stimulated the growth of this fungus. Symbiotic seedlings of the study species were exposed to paclobutrazolat 0, 1.7, 3.4, 10.2, or 17.0 M. Paclobutrazol at allconcentrations evaluated increased dropper (tuber stalk) production inD. laxiflora, but had no effect on M.media and P. sanguinea.This suggests that, for species in which paclobutrazol has no fungicidaleffect on mycorrhizal fungi, it has the potential to stimulate early andefficient tuberization of symbiotic orchid seedlings.  相似文献   

17.
The effects of sinusoidal vibration (40-120 Hz, amplitude equal to or smaller than 0.42 mm) on seed germination of Arabidopsis thaliana were examined. When the amplitude of vibration was fixed at 0.42 mm, vibration with frequencies higher than 70 Hz increased the rate of seed germination. When the frequency of vibration was fixed at 100 Hz, vibration with amplitudes larger than 0.33 mm also increased the rate of germination. The increase in the rate of germination appeared dependent on acceleration calculated from the frequency and amplitude of vibration. Vibration with a maximum acceleration of 70 m s(-2) increased the rate of germination, but the promotive effects leveled off at higher accelerations. Vibration had little effect on seed germination in a starch-deficient mutant, pgm. Thus, the amyloplasts appeared to act as a susceptor that senses mechanical vibrations. No vibration-induced promotion of germination was seen in an ethylene-insensitive mutant, etr1, or in the wild type in the presence of aminoethoxyvinylglycine, an inhibitor of ethylene synthesis, suggesting that vibration increased the rate of seed germination through the action of ethylene.  相似文献   

18.
To investigate the specificity of the symbiotic relationship between Cymbidium plants and their mycorrhiza fungi, thirty mycorrhiza fungi were isolated from roots of six terrestrial Cymbidium species. The internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) were amplified by polymerase chain reaction (PCR) with universal fungal primers ITS1/ITS4. All fungal strains isolated from natural roots of orchids were inoculated into the rhizomes of in vitro Cymbidium goeringii. Phylogenetic analysis indicated fungal isolates of different cluster could be obtained from a special terrestrial Cymbidium species. Observation of light microscope and scanning electron microscope showed that fungi entered the cortical tissue by destroying cell wall of epidermal cells, where they formed hyphal knots in the cortical cells and were digested gradually. A large number of small protuberances were visible on cross sections of the rhizome. There was no strict inter‐species specificity between the isolated mycorrhiza fungi and terrestrial Cymbidium.  相似文献   

19.
20.
Prometryn and acetochlor are common herbicides widely used to control weeds in agricultural systems. The impacts of the two herbicides on spore germination, hyphal elongation, the biomass and malondialdehyde content of carrot hairy roots were investigated using a strict in vitro cultivation system associating the Ri T‐DNA‐transferred carrot hairy roots with Glomus etunicatum. Alternatively, root colonization, daughter spore production and the proportion of hyphae with succinate dehydrogenase (SDH) and alkaline phosphatase (ALP) activities were also investigated. No significant impact on spore germination was noted in the presence of acetochlor at all three concentrations tested, while a significant decrease was observed with prometryn only at the highest concentration. Moreover, an inverse correlation was identified between herbicides concentrations and G. etunicatum root colonization and spore production as well as hyphal SDH and ALP activity, with a positive correlation identified among these four factors. Both herbicides exerted negative effects on the arbuscular mycorrhizal (AM) fungus and symbiosis at increasing concentrations, with prometryn apparently more toxic than acetochlor. Furthermore, the AM symbiotic system was shown to improve biomass, reduce malondialdehyde accumulation and ease lipid peroxidation in carrot hairy roots and decrease damage in host plants, thus enhancing plant tolerance to adverse conditions.

Significance and Impact of the Study

In this study, the effect of prometryn and acetochlor on the physiology and metabolic activities of the AM fungus Glomus etunicatum were investigated. Our findings demonstrate for the first time, the impact of the two herbicides at three concentrations (0·1, 1 and 10 mg l?1) on transformed carrot hairy roots/AM fungus association under strict in vitro culture conditions, which may guide the application of the two herbicides in modern agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号