共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Human linkage analysis is based on the assumption that unlinked genomic loci, particularly loci located on non-homologous chromosomes, segregate independently during meiosis. An exception to this rule is the phenomenon of quasi-linkage (QL) that describes the non-random segregation of non-homologous chromosomes, which can undermine the basic concept of linkage. Molecular mechanisms of QL are not clear; however, observations in mice and plants suggest a possible affinity between non-homologous chromosomal regions containing repetitive or like sequences. QL has not been investigated in humans. As QL may generate false linkages in genome scans of complex diseases, we sought to determine whether genomic loci detected in such genome scans exhibit QL. A number of individual markers showing linkage to schizophrenia, asthma, multiple sclerosis, inflammatory bowel disease and type-1 diabetes were tested for QL in a pairwise linkage analysis against all other markers exhibiting evidence for linkage in each specific study. The Marshfield genotype dataset of eight CEPH families was used for this purpose. The best QL lod scores generated from the analysis were within the range of the lukewarm lod scores reported in the majority of linkage studies for complex disorders. In addition, we performed a genome-wide QL analysis on the Marshfield family database which detected eight QL lod scores >6. The replication of the best Marshfield QL scores was performed using the deCODE families and although none of the eight pairs demonstrated independent evidence for QL, three pairs generated maximal lod scores of 0.11, 0.3, and 1.51. In conclusion, although complex disease relevant markers did not produce high QL lod scores, the general phenomenon of QL in humans cannot be excluded and potentially can be a confounding factor in genetic studies of complex traits. 相似文献
3.
4.
Genetic correlations between traits may cause correlated responses to selection. Previous models described the conditions under which genetic correlations are expected to be maintained. Selection, mutation, and migration are all proposed to affect genetic correlations, regardless of whether the underlying genetic architecture consists of pleiotropic or tightly linked loci affecting the traits. Here, we investigate the conditions under which pleiotropy and linkage have different effects on the genetic correlations between traits by explicitly modeling multiple genetic architectures to look at the effects of selection strength, degree of correlational selection, mutation rate, mutational variance, recombination rate, and migration rate. We show that at mutation-selection(-migration) balance, mutation rates differentially affect the equilibrium levels of genetic correlation when architectures are composed of pairs of physically linked loci compared to architectures of pleiotropic loci. Even when there is perfect linkage (no recombination within pairs of linked loci), a lower genetic correlation is maintained than with pleiotropy, with a lower mutation rate leading to a larger decrease. These results imply that the detection of causal loci in multitrait association studies will be affected by the type of underlying architectures, whereby pleiotropic variants are more likely to be underlying multiple detected associations. We also confirm that tighter linkage between nonpleiotropic causal loci maintains higher genetic correlations at the traits and leads to a greater proportion of false positives in association analyses. 相似文献
5.
6.
7.
8.
Reproductive isolation can evolve readily when genotypes containing incompatible alleles are connected by chains of fit intermediates. Experimental crosses show that such Dobzhansky–Muller incompatibilities (DMIs) are often complex (involving alleles at three or more loci) and asymmetrical (such that reciprocal introgressions have very different effects on fitness). One possible explanation is that asymmetrical and complex DMIs are ‘easier to evolve’, because they block fewer of the possible evolutionary paths between the parental genotypes. To assess this argument, we model evolutionary divergence in allopatry and calculate the delays to divergence caused by DMIs of different kinds. We find that the number of paths is sometimes, though not always, a reliable predictor of the time to divergence. In particular, we find limited support for the idea that symmetrical DMIs take longer to evolve, but this applies largely to two‐locus symmetrical DMIs (which leave no path of fit intermediates). Symmetrical complex DMIs can also delay divergence, but only in a limited region of parameter space. In most other cases, the presence and form of DMIs have little influence on times to divergence, and so we argue that ease of evolution is unlikely to be important in explaining the experimental data. 相似文献
9.
10.
Thamara Hesselink Gerard J. A. Rouwendal Maurice G. L. Henquet Dion E. A. Florack Johannes P. F. G. Helsper Dirk Bosch 《Transgenic research》2014,23(5):717-728
β1,4-Galactosylation of plant N-glycans is a prerequisite for commercial production of certain biopharmaceuticals in plants. Two different types of galactosylated N-glycans have initially been reported in plants as the result of expression of human β1,4-galactosyltransferase 1 (GalT). Here we show that these differences are associated with differences at its N-terminus: the natural short variant of human GalT results in hybrid type N-glycans, whereas the long form generates bi-antennary complex type N-glycans. Furthermore, expression of non-mammalian, chicken and zebrafish GalT homologues with N-termini resembling the short human GalT N-terminus also induce hybrid type N-glycans. Providing both non-mammalian GalTs with a 13 amino acid N-terminal extension that distinguishes the two naturally occurring forms of human GalT, acted to increase the levels of bi-antennary galactosylated N-glycans when expressed in tobacco leaves. Replacement of the cytosolic tail and transmembrane domain of chicken and zebrafish GalTs with the corresponding region of rat α2,6-sialyltransferase yielded a gene whose expression enhanced the level of bi-antennary galactosylation even further. 相似文献
11.
Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4′-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4′-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4′-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coli resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three α-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia. 相似文献
12.
Miao Yan Huan-De Li Ben-Mei Chen Xiao-Lei Liu Yun-Gui Zhu 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(11-12):883-887
An LC–MS method for the determination of metoclopramide in human plasma was developed and validated. Sample preparation involved extraction with ethyl acetate. Chromatographic separation was performed on a Thermo Hypersil-Hypurity C18 (150 mm × 2.1 mm, 5 μm) with the mobile phase consisting of 40 mM ammonium acetate–methanol–acetonitrile. A single-quadrupole mass spectrometer with an electrospray interface was operated in the selected-ion monitoring mode to detect the [M+H]+ ions at m/z 300 for metoclopramide and at m/z 384 for the internal standard (prazosin). The method was validated over 0.78–50.00 ng mL?1 for metoclopramide. The recovery was 67.8–83.1%, and the limit of quantitation (LOQ) detection was 0.78 ng mL?1 for metoclopramide. The intra- and inter-day precision of the method at three concentrations was 5.0–13.6% with accuracy of 99.2–104.0%. Stability of compounds was established in a battery of stability studies. The method was successfully applied to bioequivalence studies of metoclopramide hydrochloride tablets to obtain the pharmacokinetic parameters. 相似文献
13.
Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies 总被引:6,自引:0,他引:6 下载免费PDF全文
The calpain-10 gene (CAPN10) on chromosome 2q37.3 was the first candidate gene for type 2 diabetes (T2D) identified through a genomewide screen and positional cloning. One polymorphism (UCSNP-43: G-->A) and a specific haplotype combination defined by three polymorphisms (UCSNP-43, -19, and -63) were linked to an increased risk of T2D in several populations. To quantitatively assess the collective evidence for the effects of CAPN10 on risk of T2D, we conducted a meta-analysis of both population-based and family-based association studies. We retrieved data from the MEDLINE, PubMed, and Online Mendelian Inheritance in Man databases, as well as from other relevant reports and abstracts published up to July 2003. From a total of 26 studies with primary data (21 population-based studies: 5,013 cases and 5,876 controls; 5 family-based studies: 487 parent-offspring trios), we developed a summary database that contains variables of study design, study population/ethnicity, specific polymorphisms and haplotype combinations in CAPN10, and diabetes-related metabolic phenotypes. For population-based studies, we used both fixed-effects and random-effects models to calculate the pooled odds ratio (OR) and 95% confidence interval (CI) for the associations of CAPN10 genotypes with the risk of T2D. We also calculated weighted mean differences for the associations between CAPN10 and diabetes-related quantitative traits. Under either an additive or a dominant effect model, we found no statistically significant relation between CAPN10 genotypes in the UCSNP-43 locus and T2D risk. However, under a recessive model, individuals homozygous for the common G allele had a statistically significant 19% higher risk of T2D than carriers of the A allele (OR 1.19; 95% CI 1.07-1.33). The association between the 112/121 haplotype combination and T2D risk appeared to be overestimated by several initial small studies with positive findings (OR 1.38; 95% CI 1.04-1.84). After we removed these initial studies, this association became nonsignificant (OR 1.11; 95% CI 0.91-1.35). Moreover, we found no evidence for the associations between the UCSNP-43 G/G genotype and the 112/121 haplotype combination and metabolic phenotypes. Our meta-analysis of family-based studies showed only an overtransmission of the rare allele C in UCSNP-44 from heterozygous parents to their affected offspring with T2D. Our analysis indicates that inadequate statistical power, racial/ethnic differences in frequencies of alleles, haplotypes and haplotype combinations, potential gene-gene or gene-environment interactions, publication bias, and multiple hypothesis testing may contribute to the significant heterogeneity in previous studies of CAPN10 and T2D. Our findings also suggest that both large-scale, well-designed association studies and functional studies are warranted to either reliably confirm or conclusively refute the initial hypothesis regarding the role of CAPN10 in T2D risk. 相似文献
14.
Summary Some types of nondeletional heterocellular hereditary persistence of fetal hemoglobin (HPFH) appear to be caused by mutations in the globin gene cluster near the globin genes, while in other cases the condition is associated with a gene or genes outside the globin gene complex. We have used DNA probes for chromosome 11 markers to localize the HPFH determinant in a large Australian kindred with nondeletional heterocellular HPFH. In 13 of the 58 family members studied the Hb F levels are increased to between 1.8% and 7.9%, the Hb F being composed predominantly of A chains. All family members were typed for restriction fragment length polymorphisms detected by probes from the globin gene complex, and the nearby genetic markers D11S12, INS, and HRAS. Linkage analysis showed HPFH is closely linked to the globin gene cluster (confidence limits of 0,0.0-0.19), D11S12 (0, 0.0-0.23) and the insulin gene (0,0.0-0.11). These data and the chain composition are consistent with HPFH in this family being caused by a mutation within the globin gene cluster. 相似文献
15.
Gottlieb B Beitel LK Trifiro M 《BioEssays : news and reviews in molecular, cellular and developmental biology》2007,29(7):678-685
Our incomplete understanding of carcinogenesis may be a significant reason why some cancer mortality rates are still increasing. This lack of understanding is likely due to a research approach that relies heavily on genetic comparison between cancerous and non-cancerous tissues and cells, which has led to the identification of genes of cancer proliferation rather than differentiation. Recent observations showing that a tremendous degree of natural human genetic variation occurs are likely to lead to a shift in the basic paradigms of cancer genetics, in that there is a need to consider both the nature of the genes involved, and the idea that not every genetic variation identified in these genes may be associated with carcinogenesis. Based on studies using LCM and micro-genetic analyses, we propose that significant cancer initiating events may take place during the very early stages of development of cancer-susceptible tissues and that using such techniques might greatly help us in our understanding of carcinogenesis. 相似文献
16.
Schmid G Bolz T Uberbacher R Escorihuela-Navarro A Bahr A Dorn H Sauter C Eggert T Danker-Hopfe H 《Bioelectromagnetics》2012,33(7):594-603
A new head exposure system for double‐blind provocation studies investigating possible effects of terrestrial trunked radio (TETRA)‐like exposure (385 MHz) on central nervous processes was developed and dosimetrically analyzed. The exposure system allows localized exposure in the temporal brain, similar to the case of operating a TETRA handset at the ear. The system and antenna concept enables exposure during wake and sleep states while an electroencephalogram (EEG) is recorded. The dosimetric assessment and uncertainty analysis yield high efficiency of 14 W/kg per Watt of accepted antenna input power due to an optimized antenna directly worn on the subject's head. Beside sham exposure, high and low exposure at 6 and 1.5 W/kg (in terms of maxSAR10g in the head) were implemented. Double‐blind control and monitoring of exposure is enabled by easy‐to‐use control software. Exposure uncertainty was rigorously evaluated using finite‐difference time‐domain (FDTD)‐based computations, taking into account anatomical differences of the head, the physiological range of the dielectric tissue properties including effects of sweating on the antenna, possible influences of the EEG electrodes and cables, variations in antenna input reflection coefficients, and effects on the specific absorption rate (SAR) distribution due to unavoidable small variations in the antenna position. This analysis yielded a reasonable uncertainty of <±45% (max to min ratio of 4.2 dB) in terms of maxSAR10g in the head and a variability of <±60% (max to min ratio of 6 dB) in terms of mass‐averaged SAR in different brain regions, as demonstrated by a brain region‐specific absorption analysis. Bioelectromagnetics 33:594–603, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
17.
The 3' regulatory regions (3' RRs) of human genes play an important role in regulating mRNA 3' end formation, stability/degradation, nuclear export, subcellular localization and translation and are consequently rich in regulatory elements. Although 3' RRs contain only approximately 0.2% of known disease-associated mutations, this is likely to represent a rather conservative estimate of their actual prevalence. In an attempt to catalogue 3' RR-mediated disease and also to gain a greater understanding of the functional role of regulatory elements within 3' RRs, we have performed a systematic analysis of disease-associated 3' RR variants; 121 3' RR variants in 94 human genes were collated. These included 17 mutations in the upstream core polyadenylation signal sequence (UCPAS), 81 in the upstream sequence (USS) between the translational termination codon and the UCPAS, 6 in the left arm of the 'spacer' sequence (LAS) between the UCPAS and the pre-mRNA cleavage site (CS), 3 in the right arm of the 'spacer' sequence (RAS) or downstream core polyadenylation signal sequence (DCPAS) and 7 in the downstream sequence (DSS) of the 3'-flanking region, with 7 further mutations being treated as isolated examples. All the UCPAS mutations and the rather unusual cases of the DMPK, SCA8, FCMD and GLA mutations exert a significant effect on the mRNA phenotype and are usually associated with monogenic disease. By contrast, most of the remaining variants are polymorphisms that exert a comparatively minor influence on mRNA expression, but which may nevertheless predispose to or otherwise modify complex clinical phenotypes. Considerable efforts have been made to validate/elucidate the mechanisms through which the 3' untranslated region (3' UTR) variants affect gene expression. It is hoped that the integrative approach employed here in the study of naturally occurring variants of actual or potential pathological significance will serve to complement ongoing efforts to identify all functional regulatory elements in the human genome. 相似文献
18.
19.
20.
Summary 88 families with a total of 213 children were examined for 2-glycoprotein I serum concentrations. In 74 families parents and children had normal concentrations. In 9 families one of the parents and approximately half of the children had intermediate concentrations. These individuals are presumably heterozygous for a deficiency gene BgD. In these families 2-glycoprotein I concentration appears to be controlled by a pair of alleles which are transmitted as autosomal co-dominants. The results in 5 families did not conform to this genetic hypothesis, since children with an intermediate concentration of 2-glycoprotein I were found whose both parents had a normal concentration of this protein. Non-genetic factors may be responsible for phenotypic variations in the different genetic types.Supported by U.S.P.H.S. Grant AM 11796-02 and by the Deutsche Forschungsgemeinschaft. 相似文献