首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative trait locus (QTL) for grain weight (GW) was detected near SSR marker RM210 on chromosome 8 in backcross populations derived from a cross between the Korean japonica cultivar Hwaseongbyeo and Oryza rufipogon (IRGC 105491). The O. rufipogon allele increased GW in the Hwaseongbyeo background despite the fact that O. rufipogon was the small-seeded parent. Using sister BC3F3 near-isogenic lines (NILs), gw8.1 was validated and mapped to a 6.1 cM region in the interval between RM42 and RM210 (P≤0.0001). Substitution mapping with eight BC3F4 sub-NILs further narrowed the interval containing gw8.1 to about 306.4 kb between markers RM23201.CNR151 and RM30000.CNR99. A yield trial using homozygous BC3F4 sister sub-NILs and the Hwaseongbyeo recurrent parent indicated that the NIL carrying an O. rufipogon chromosome segment across the entire gw8.1 target region out-yielded its sister NIL (containing Hwaseongbyeo chromosome in the RM42–RM210 interval) by 9% (P=0.029). The higher-yielding NIL produced 19.3% more grain than the Hwaseongbyeo recurrent parent (P=0.018). Analysis of a BC3F4 NIL indicated that the variation for GW is associated with variation in grain shape, specifically grain length. The locus, gw8.1 is of particular interest because of its independence from undesirable height and grain quality traits. SSR markers tightly linked to the GW QTL will facilitate cloning of the gene underlying this QTL as well as marker-assisted selection for variation in GW in an applied breeding program.  相似文献   

2.
Chromosome segment substitution (CSS) lines have the potential for use in QTL fine mapping and map-based cloning. The standard t-test used in the idealized case that each CSS line has a single segment from the donor parent is not suitable for non-idealized CSS lines carrying several substituted segments from the donor parent. In this study, we present a likelihood ratio test based on stepwise regression (RSTEP-LRT) that can be used for QTL mapping in a population consisting of non-idealized CSS lines. Stepwise regression is used to select the most important segments for the trait of interest, and the likelihood ratio test is used to calculate the LOD score of each chromosome segment. This method is statistically equivalent to the standard t-test with idealized CSS lines. To further improve the power of QTL mapping, a method is proposed to decrease multicollinearity among markers (or chromosome segments). QTL mapping with an example CSS population in rice consisting of 65 non-idealized CSS lines and 82 chromosome segments indicated that a total of 18 segments on eight of the 12 rice chromosomes harboured QTLs affecting grain length under the LOD threshold of 2.5. Three major stable QTLs were detected in all eight environments. Some minor QTLs were not detected in all environments, but they could increase or decrease the grain length constantly. These minor genes are also useful in marker-assisted gene pyramiding.  相似文献   

3.
Chalkiness of rice grain is an important quality component of rice, as it has a profound influence on eating and milling qualities. We has determined the inheritance of percentage of grain with chalkiness (PGWC) using a set of chromosome segment substitution lines, made from a cross between cv. PA64s and cv. 9311. Two loci controlling PGWC, designated as qPGWC-6 and qPGWC-7, were located on, respectively, chromosomes 6 and 7. Comparisons were made between C-51 (a CSSL harbouring qPGWC-7 and having a chalky endosperm) and the recurrent parent 9311 (translucent endosperm) to characterize the physical and chemical differences between translucent and chalky endosperm. Unlike the translucent endosperm, the chalky endosperm contains loosely packed starch granules, and there were significant difference between C-51 and 9311 for amylopectin structure and degree of crystallinity, but not for either amylose content or starch viscosity. Segregation analysis of the F2 population from the cross between C-51 and 9311 showed PGWC is a semi-dominant trait, controlled by single nuclear gene. A large F2 population was constructed from the cross C51 × 9311, and used for the fine mapping of qPGWC-7, which was located to a 44-kb DNA fragment, containing thirteen predicted genes. This result provides a springboard for the map-based cloning of qPGWC-7 and allowed for marker-assisted selection for endosperm texture.  相似文献   

4.
5.
6.
Three previously identified grain yield quantitative trait loci (QTL) on chromosomes 2S(2HS), 3C(3HC) and 5L(1HL), designated QTL-2S, QTL-3 and QTL-5L, respectively, were evaluated for their potential to increase yields of high-quality malting barley without disturbing their favorable malting quality profile. QTL mapping of yield related traits was performed and near-isogenic lines (NILs) were developed. QTL for plant height, head shattering, seed weight and number of rachis nodes/spike were detected in the QTL-3 region. NILs developed by introgressing QTL-3 from the high-yielding cv. Steptoe to the superior malting quality, moderate-yielding cv. Morex acquired reduced height, lodging and head shattering features of Steptoe without major changes in malting quality. The yield of NILs, measured by minimizing the losses due to lodging and head shattering, did not exceed that of Morex. Steptoe NILs, with the Morex QTL-2S region, flowered 10 days later than Steptoe but the grain yield was not changed. None of the 3 QTL studied altered the measured yield of the recipient genotype, per se, although QTL 2S and QTL-3 affected yield-related traits. We conclude that these yield QTL must interact with other genes for full expression. Alternatively, they affect the harvestable yield through reduced lodging, head shattering, and/or altered flowering time.  相似文献   

7.
In the near future, global average temperature is expected to increase due to the accumulation of greenhouse gases, and increased temperatures will cause severe sterility in many crop species. In rice, since wild species show high genetic variation, they may have the potential to improve the flowering characters of cultivars. In this study, we investigated flowering characters under natural conditions by comparing an Asian wild rice accession of Oryza rufipogon W630 (originated from Myanmar) with a Japanese rice cultivar, O. sativa Japonica cv. Nipponbare. Further, QTL analysis for days to heading (DH) and spikelet opening time (SOT: the time of day when the spikelet opens) was carried out using BC(2)F(8) backcross population derived from the cross between them. Regarding DH, four QTLs were detected, and two of them were found to have wild alleles with strong effects leading to longer days to heading during the Japanese summer. These wild alleles may be used to produce late-heading cultivars that do not flower during the high summer temperatures anticipated in the future. As for SOT, two parameters of SOTb (beginning time when the first spikelet opens) and SOTm (median time when 50% of the spikelets open) were recorded and the time differences from Nipponbare were investigated. Two QTLs on chromosomes 5 and 10 and two QTLs on chromosomes 4 and 5 were detected for SOTb and SOTm, respectively. The wild alleles were responsible for early spikelet opening time at all loci. If the wild alleles detected in this study have the same effects in the genetic background of other cultivars, they will be very useful in producing early-flowering rice cultivars that complete fertilization in the morning before the temperature rises.  相似文献   

8.
Wild germplasm of domesticated crops is a source of genetic variation little utilized in breeding programs. Interspecific crosses can potentially uncover novel gene combinations that can be important for quantitative trait analysis. The combined use of wide crosses and genetic maps of chromosomal regions associated with quantitative traits can be used to broaden the genetic basis of rice breeding programs. Oryza glumaepatula is a diploid (AA genome) wild rice species native from South and Central America. A genetic map was constructed with 162 PCR-based markers (155 microsatellite and 7 STS markers) using a backcross population derived from the cross O. glumaepatula, accession RS-16 from the Brazilian Amazon Region x O. sativa BG-90-2, an elite rice inbred line. The map included 47 new SSR markers developed from an O. glumaepatula genomic library enriched for AG/TC sequences. All SSR markers were able to amplify the O. sativa genome, indicating a high degree of SSR flanking region conservation between O. glumaepatula and O. sativa species. The map covered 1500.4 cM, with an average of one marker every 10 cM. Despite some chromosomes being more densely mapped, the overall coverage was similar to other maps developed for rice. The advantage to construct a SSR-based map is to permit the combination of the speed of the PCR reaction, and the codominant nature of the SSR marker, facilitating the QTL analysis and marker assisted selection for rice breeding programs.  相似文献   

9.
Asian cultivated rice (Oryza sativa L.) and African cultivated rice (Oryza glaberrima Steud.) are the two main cultivated rice species in the world, with strong heterosis in their F1 hybrids. However, hybrid sterility is a major barrier, although significant heterosis has been observed. In this study, an F1 pollen semi-sterility locus, S19, was identified on rice chromosome 3 by using near-isogenic lines derived from repeated backcross and marker-assisted selection. The typical pollen semi-sterility was observed in F1 hybrids between S19-NIL and Dianjingyou 1. Cytological study of pollen developmental stages indicated that pollen abortion occurred at the late binucleate stage because of a starch accumulation obstacle in some pollen grains. Molecular analysis revealed that the semi-sterility was caused by the abortion of most male gametophytes carrying the S19 allele from the japonica variety Dianjingyou 1. In a population of 12,780 F2 plants derived from S19-NIL/Dianjingyou 1, the S19 locus was fine-mapped to a chromosomal region of 54 kb based on BAC clones of cv. Nipponbare. Interestingly, an addition of a DNA fragment of about 89 kb to the 54-kb region was found in S19-NIL based on BAC clones of O. glaberrima. Gene prediction analysis identified 12 open reading frames (ORF) based on the region of Dianjingyou 1, while 32 ORFs were predicted in S19-NIL. Map-based cloning of this gene will help us to understand the underlying mechanism of hybrid sterility between the two cultivated rice species.  相似文献   

10.
Grain chalkiness is one of the important appearance qualities in rice marketing. But it is a complex trait, controlled by polygenes and easily influenced by the environment. Genetic analysis and QTL detection was carried out on six characteristics of grain chalkiness consisting of the percentage of chalkiness (PGC), white belly (PWB) and white core grains (PWC), and the area of chalkiness (CA), white belly (WBA) and white core (WCA) in brown rice. A total of 16 main-effect QTLs associated with chalkiness characteristics of brown rice were mapped on seven chromosomes over two years. Among them,qPGC7.1 andqPWB7.2 were simultaneously located on chromosome 7 flanked by 7038 and 7042 at LOD scores 4.34 and 3.76, whileqPWC2.1 andqWCA2.1 were simultaneously located on chromosome 2 flanked by RM492 and RM324 with LOD scores of 2.50 and 3.39. Twelve epistatic combinations were detected for five chalkiness characteristics except for CA. Results indicated that WBA was mainly influenced by the additive effects of main-effect QTLs. PGC and PWC were affected by the effects of epistatic QTLs and the interactions between additive-by-additive effects and the environment. The effects of epistatic QTLs and the main-effect QTLs played important roles on CA, PWB and WCA. For the genetic improvement of grain chalkiness in breeding system, more attention should be paid to epistatic effects and the additive effects of main-effect QTLs.  相似文献   

11.
Oryza minuta, a tetraploid wild relative of cultivated rice, is an important source for the genetic improvement. Interspecific hybrids were obtained from the cross of O. sativa L. (IR24) and O. minuta (Acc. No. 101133) with 5.58% crossability, which ranged from 0.11% to 1.62% in the backcross generations. The chromosome numbers of the backcross progenies were 24 to 48. Seven yield-related traits of the parents, hybrid F1, and backcross progenies were evaluated. Simple sequence repeat markers analysis showed that the polymorphism ratio of SSR bands between IR24 and Acc. No. 101133 was 93.2%. The average donor segment number, length, donor genome size, and percentage of donor genome of 92 BC3F1 plants (2n=24) were 24.1, 17.8 cM, 438.4 cM and 26.2%, respectively. They were complex variation and uneven among the chromosomes. These introgression lines could be used to identify the favorable genes of O. minuta and provide a new platform for the genetic improvement of cultivated rice.  相似文献   

12.
13.
An earlier study identified quantitative trait loci (QTLs) lb4, lb5b, and lb11b for quantitative resistance to Phytophthora infestans (late blight) in a backcross population derived from crossing susceptible cultivated tomato (Lycopersicon esculentum) with resistant L. hirsutum. The QTLs were located in intervals spanning 28–47 cM. Subsequently, near-isogenic lines (NILs) were developed for lb4, lb5b, and lb11b by marker-assisted backcrossing to L. esculentum. Sub-NILs containing overlapping L. hirsutum segments across each QTL region were selected and used to validate the QTL effects, fine-map QTLs, and evaluate potential linkage drag between resistance QTLs and QTLs for horticultural traits. The NILs and sub-NILs were evaluated for disease resistance and eight horticultural traits at three field locations. Resistance QTLs were detected in all three sets of NIL lines, confirming the BC1 mapping results. Lb4 mapped near TG609, and between TG182 and CT194, on chromosome 4, a 6.9-cM interval; lb5b mapped to an 8.8-cM interval between TG69a and TG413 on chromosome 5, with the most likely position near TG23; and lb11b mapped to a 15.1-cM interval on chromosome 11 between TG194 and TG400, with the peak centered between CT182 and TG147. Most QTLs for horticultural traits were identified in intervals adjacent to those containing the late blight resistance QTLs. Fine mapping of these QTLs permits the use of marker-assisted selection for the precise introgression of L. hirsutum segments containing late blight resistance alleles separately from those containing deleterious alleles at horticulturally important QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D.B. Neale  相似文献   

14.
Near isogenic lines (NILs) can be used to efficiently handle a target quantitative trait locus (QTL) by blocking genetic background noise. One QTL, SPP1, which controls the number of spikelets per panicle (SPP), was located on chromosome 1, near Gn1a, a cloned gene for rice production in a recombinant inbred line population. NILs of the SPP1 regions were quickly obtained by self-crossing recombinant inbred line 30 which is heterozygous around SPP1. Using a random NIL-F2 population of 210 individuals, we mapped SPP1 to a 2.2-cM interval between RM1195 and RM490, which explained 51.1% of SPP variation. The difference in SPP between the two homozygotes was 44. F2-1456, one NIL-F2 plant, was heterozygous in the SPP1 region but was fixed in the region of Gn1a gene. This plant F3 family showed a very wide variation in SPP, which suggested that it was SPP1 but Gn1a affected the variation of SPP in this population. In a word, SPP1 is a novel gene distinct from Gn1a. Four newly developed InDel markers were used for high-resolution mapping of SPP1 with a large NIL-F2 population. Finally, it was narrowed down to a bacterial artificial chromosome clone spanning 107 kb; 17 open reading frames have been identified in the region. Of them, LOC_Os01g12160, which encodes an IAA synthetase, is the most interesting candidate gene.  相似文献   

15.

Key message

A minor QTL for heading date located on the long arm of rice chromosome 1 was delimitated to a 95.0-kb region using near isogenic lines with sequential segregating regions.

Abstract

Heading date and grain yield are two key factors determining the commercial potential of a rice variety. In this study, rice populations with sequential segregating regions were developed and used for mapping a minor QTL for heading date, qHd1. A total of 18 populations in six advanced generations through BC2F6 to BC2F11 were derived from a single BC2F3 plant of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The QTL was delimitated to a 95.0-kb region flanked by RM12102 and RM12108 in the terminal region of the long arm of chromosome 1. Results also showed that qHd1 was not involved in the photoperiodic response, having an additive effect ranging from 2.4 d to 2.9 d observed in near isogenic lines grown in the paddy field and under the controlled conditions of either short day or long day. The QTL had pleiotropic effects on yield traits, with the ZS97 allele delaying heading and increasing the number of spikelets per panicle, the number of grains per panicle and grain yield per plant. The candidate region contains ten annotated genes including two genes with functional information related to the control of heading date. These results lay a foundation for the cloning of qHd1. In addition, this kind of minor QTLs could be of great significance in rice breeding for allowing minor adjustment of heading date and yield traits.  相似文献   

16.
基于CSSL的水稻穗颈长度QTL的代换作图   总被引:3,自引:0,他引:3  
杨德卫  朱镇  张亚东  林静  陈涛  赵凌  朱文银  王才林 《遗传》2009,31(7):741-747
水稻穗颈长度是影响杂交水稻制种产量提高的重要农艺性状之一。文章利用94个以籼稻品种9311为遗传背景、粳稻品种日本晴为染色体片段供体的覆盖全基因组的染色体片段置换系(Chromosome segment substi-tution lines, CSSL)为材料, 调查和分析CSSL群体及双亲的穗颈长度。结果表明: 在17个置换系中检测到8个控制水稻穗颈长度的数量性状位点(Quantitative trait loci, QTL), 分别位于第2、3、7、8、9和第11染色体; 利用代换作图法, 定位了其中的7个穗颈长度QTL; 其加性效应值介于0.10~3.20之间, 其中qPE-9和qPE-11的加性效应值较大, 平均效应值分别为3.15和2.95, 表现为主效基因特征; qPE-2-2、qPE-3-1、qPE-3-2、qPE-7和qPE-8等5个QTL被定位在小于10.0 cM的区段内。利用CSSL可以有效地鉴定水稻穗颈长度QTL, 这些QTL为分子标记辅助选育穗颈长度适中的水稻品系及其进一步的精细定位奠定了基础。  相似文献   

17.
 Domesticated rice differs from the wild progenitor in large arrays of morphological and physiological traits. The present study was conducted to identify the genetic factors controlling the differences between cultivated rice and its wild progenitor, with the intention to assess the genetic basis of the changes associated with the processes of rice domestication. A total of 19 traits, including seven qualitative and 12 quantitative traits, that are related to domestication were scored in an F2 population from a cross between a variety of the Asian cultivated rice (Oryza sativa) and an accession of the common wild rice (O. rufipogon). Loci controlling the inheritance of these traits were determined by making use of a molecular linkage map consisting of 348 molecular-marker loci (313 RFLPs, 12 SSRs and 23 AFLPs) based on this F2 population. All seven qualitative traits were each controlled by a single Mendelian locus. Analysis of the 12 quantitative traits resolved a total of 44 putative QTLs with an average of 3.7 QTLs per trait. The amount of variation explained by individual QTLs ranged from a low of 6.9% to a high of 59.8%, and many of the QTLs accounted for more than 20% of the variation. Thus, genes of both major and minor effect were involved in the differences between wild and cultivated rice. The results also showed that most of the genetic factors (qualitative or QTLs) controlling the domestication-related traits were concentrated in a few chromosomal blocks. Such a clustered distribution of the genes may provide explanations for the genetic basis of the “domestication syndrome” observed in evolutionary studies and also for the “linkage drag” that occurs in many breeding programs. The information on the genetic basis of some desirable traits possessed by the wild parent may also be useful for facilitating the utilization of these traits in rice-breeding programs. Received: 1 June 1998 / Accepted: 28 July 1998  相似文献   

18.
The appearance and cooking quality of rice determine its acceptability and price to a large extent. Quantitative trait loci (QTLs) for 12 grain quality traits were mapped in 2 mapping populations derived from Oryza sativa cv Swarna × O. nivara. The BC(2)F(2) population of the cross Swarna × O. nivara IRGC81848 (population 1) was evaluated during 2005 and that from Swarna × O. nivara IRGC81832 (population 2) was evaluated during 2006. Linkage maps were constructed using 100 simple sequence repeat (SSR) markers in population 1 and 75 SSR markers in population 2. In all, 21 QTLs were identified in population 1 (43% from O. nivara) and 37 in population 2 (38% QTLs from O. nivara). The location of O. nivara-derived QTLs mp1.2 for milling percent, kw6.1 for kernel width, and klac12.1 for kernel length after cooking coincided in the 2 populations and appear to be useful for Marker Assisted Selection (MAS). Four QTLs for milling percent, 1 QTL each for amylose content, water uptake, elongation ratio, 2 QTLs for kernel width, and 3 QTLs for gel consistency, each explained more than 20% phenotypic variance. Three QTL clusters for grain quality traits were close to the genes/QTLs for shattering and seed dormancy. QTLs for 4 quality traits were associated with 5 of the 7 major yield QTLs reported in the same 2 mapping populations. Useful introgression lines have been developed for several agronomic traits. It emerges that 40% O. nivara alleles were trait enhancing in both populations, and QTLs for grain quality overlapped with yield meta-QTLs and QTLs for dormancy and seed shattering.  相似文献   

19.
Manganese (Mn) is an essential trace element for plants and commonly contributes to human health; however, the understanding of the genes controlling natural variation in Mn in crop plants is limited. Here, the integration of two of genome-wide association study approaches was used to increase the identification of valuable quantitative trait loci (QTL) and candidate genes responsible for the concentration of grain Mn across 389 diverse rice cultivars grown in Arkansas and Texas, USA, in multiple years. Single-trait analysis was initially performed using three different SNP datasets. As a result, significant loci could be detected using the high-density SNP dataset. Based on the 5.2 M SNP dataset, major QTLs were located on chromosomes 3 and 7 for Mn containing six candidate genes. In addition, the phenotypic data of grain Mn concentration were combined from three flooded-field experiments from the two sites and 3 years using multi-experiment analysis based on the 5.2 M SNP dataset. Two previous QTLs on chromosome 3 were identified across experiments, whereas new Mn QTLs were identified that were not found in individual experiments, on chromosomes 3, 4, 9 and 11. OsMTP8.1 was identified in both approaches and is a good candidate gene that could be controlling grain Mn concentration. This work demonstrates the utilisation of multi-experiment analysis to identify constitutive QTLs and candidate genes associated with the grain Mn concentration. Hence, the approach should be advantageous to facilitate genomic breeding programmes in rice and other crops considering QTLs and genes associated with complex traits in natural populations.Subject terms: Genome-wide association studies, Plant breeding  相似文献   

20.
Grain dimensions (length, breadth and length/breadth ratio) are important quality attributes of Basmati rice for its high consumer acceptance. Earlier we identified two significant quantitative trait loci (QTL) intervals on chromosomes 1 and 7 for grain dimensions in Basmati rice using a population of recombinant inbred lines (RILs) from cross between Basmati variety Pusa 1121 and a short grain non-aromatic variety Pusa 1342. For fine mapping of these QTLs, 184 F6 RILs were grown and phenotyped in the normal rice growing season at two different locations. Forty-nine new SSR markers targeting these QTL intervals were tested and nine were found polymorphic between the parents. Using revised genetic maps adding new markers, the grain length QTL qGRL1.1 on chromosome 1 was narrowed down to 108?kbp from the earlier reported 6,133?kbp. There were total 13 predicted gene models in this interval which includes the probable candidate gene for the exceptionally high grain length of Basmati variety Pusa 1121. Similarly, two tandem QTL intervals qGRL7.1 and qGRL7.2 on chromosome 7 were merged into a single one narrowed down to 2,390?kbp from the earlier reported length of 5,269?kbp. This region of chromosome 7 also has co-localized QTLs for grain breadth and length to breadth ratio. SSR markers tightly linked to the QTL at a map distance of ??0.2?cM were developed for the qGRL1.1 and qGRL7.1 loci that could be used for marker-assisted breeding. Validation of earlier published markers for the grain length gene GS3 on chromosome 3 showed no difference between Pusa 1121 and Pusa 1342, highlighting the significance of qGRL1.1 and qGRL7.1 for the extra grain length of Basmati variety Pusa 1121.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号