首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
There are phenotypic differences between Korean native pig (KNP) and Yorkshire (YS) breeds due to different interests in selection. YS has been selected for industrial interests such as a growth rate and lean meat production, while KNP has been maintained as a regional breed with local interests such as disease resistance and fat content in and between muscle. A comparison of gene expression profiles from liver tissue reflected overall long-term effects of artificial selection for these two pig breeds. Based on minimum positive false discovery rate (less than 10%) and fold change (|FC|>1.5), 73 differentially expressed genes (DEGs) were identified. Functional analysis of these DEGs indicated clear distinctions in signaling capacity related to epidermal growth factor (EGF), extracellular structure, protein metabolism, and detoxification. Hepatic DEGs demonstrated the importance of hormonal and metabolic capabilities to differences between these two pig breeds.  相似文献   

2.
3.
4.
The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.  相似文献   

5.
6.
7.
8.
MicroRNAs (miRNAs) are class of molecular regulators found to participate in numerous biological processes, such as adipogenesis and obesity in mammals. To determine the roles of miRNAs involved in castration-induced body fatness, we investigated the different miRNA expression patterns in subcutaneous adipose tissue between intact and castrated male pigs. Our results showed that castration led to decrease serum testosterone but increase serum Leptin levels (P?<?0.01). Moreover, castration also increased adipocyte size, body fat content and backfat thickness in male pigs (P?<?0.01). Meanwhile, miRNA expression profiles in adipose tissue were changed by castration, and 18 miRNAs were considered as the differentially expressed candidates between intact and castrated male pigs. Furthermore, functional analysis indicated that the differential expressed miRNAs and their target genes are involved in the regulation of fatty acid metabolism. In brief, our present study provides a comprehensive view on how miRNAs works in subcutaneous adipose tissue with castration. These results suggested that miRNAs might play an important role in the castration-induced fat deposition in male pigs.  相似文献   

9.
10.
Pig chromosome 6 (SSC6) has been reported to have QTL affecting backfat thickness (BFT) and intramuscular fat (IMF). A human-pig comparative map covering 18 autosomes with the highest resolution has been constructed and based on this map SSC6 has conserved syntenicgroups with human chromosome (HSA) 16, 19, 1, and 18. In this study, the pig Affy elements mapped to the SSC6 were analyzed, and the differentially expressed genes in three tissues (liver, backfat and loin muscle) between Yorkshire and Korean Native Pigs (KNP) were collected, in particular those genes located in the internal between markers SW1355 and SW1823 where a quantitative trait loci (QTL) affecting the intramuscular fat content (IMF) have been detected in multiple pig populations. The genes listed here may offer information for further study the candidate genes affecting these QTL on the expression level.  相似文献   

11.
12.
13.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine sub-cutaneous fat thickness(SFT) and intramuscular fat(IMF) content.Obese and lean-type pig breeds show obvious differences in adipose deposition;however, the molecular mechanism underlying this phenotypic variation remains unclear.We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages(1―5 months) of Landrace(a leaner, Western breed) and Taihu pigs(a fatty, indigenous, Chinese breed).Variance analysis(ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant(FDR adjusted permutation, P<0.05) among 5 growth stages.Gene class test(GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages(PErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associ-ated with lipid and steroid metabolism.These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes.Clustering analysis revealed a very high level of significance(FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance(FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs.Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs.Based on a dy-namic Bayesian network(DBN) model, gene regulatory networks(GRNs) were reconstructed from time-series data for each pig breed.These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds;from these results, some potential key genes could be identified.Quantitative, real-time RT-PCR(QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages(R=0.874±0.071).These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine subcutaneous fat thickness (SFT) and intramuscular fat (IMF) content. Obese and lean-type pig breeds show obvious differences in adipose deposition; however, the molecular mechanism underlying this phenotypic variation remains unclear. We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages (1–5 months) of Landrace (a leaner, Western breed) and Taihu pigs (a fatty, indigenous, Chinese breed). Variance analysis (ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant (FDR adjusted permutation, P<0.05) among 5 growth stages. Gene class test (GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages (P ErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associated with lipid and steroid metabolism. These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes. Clustering analysis revealed a very high level of significance (FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance (FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs. Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs. Based on a dynamic Bayesian network (DBN) model, gene regulatory networks (GRNs) were reconstructed from time-series data for each pig breed. These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds; from these results, some potential key genes could be identified. Quantitative, real-time RT-PCR (QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages (R=0.874±0.071). These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号